Mathematical modeling of slope flows of non-Newtonian media
Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 229-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the mathematical modeling of the dynamics of geophysical flows on mountain slopes, e.g., rapid landslides, debris flows, avalanches, lava flows, etc. Such flows can be very dangerous for people and various objects. A brief description is given of models that have been used so far, as well as of new, more sophisticated, models, including those developed by the authors. In these new models, nonlinear rheological properties of the moving medium, entrainment of the underlying material, and the turbulence are taken into account. The results of test simulations of flows down long homogeneous slopes are presented, which demonstrate the influence of rheological properties, as well as of turbulence and mass entrainment, on the behavior of the flow.
@article{TRSPY_2018_300_a18,
     author = {M. E. Eglit and A. E. Yakubenko and J. S. Zayko},
     title = {Mathematical modeling of slope flows of {non-Newtonian} media},
     journal = {Informatics and Automation},
     pages = {229--239},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a18/}
}
TY  - JOUR
AU  - M. E. Eglit
AU  - A. E. Yakubenko
AU  - J. S. Zayko
TI  - Mathematical modeling of slope flows of non-Newtonian media
JO  - Informatics and Automation
PY  - 2018
SP  - 229
EP  - 239
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a18/
LA  - ru
ID  - TRSPY_2018_300_a18
ER  - 
%0 Journal Article
%A M. E. Eglit
%A A. E. Yakubenko
%A J. S. Zayko
%T Mathematical modeling of slope flows of non-Newtonian media
%J Informatics and Automation
%D 2018
%P 229-239
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a18/
%G ru
%F TRSPY_2018_300_a18
M. E. Eglit; A. E. Yakubenko; J. S. Zayko. Mathematical modeling of slope flows of non-Newtonian media. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 229-239. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a18/

[1] V. P. Blagoveshchensky, M. E. Eglit, V. V. Zhdanov, B. B. Askarbekov, “Calibration of snow avalanche mathematical models using the data of real avalanches in the Ile (Zailiyskiy) Alatau Range”, Led Sneg, 57:2 (2017), 213–220

[2] Bovet E., Chiaia B., Preziosi L., “A new model for snow avalanche dynamics based on non-Newtonian fluids”, Meccanica, 45:6 (2010), 753–765 | DOI | MR

[3] Chambon G., Ghemmour A., Naaim M., “Experimental investigation of viscoplastic free-surface flows in a steady uniform regime”, J. Fluid Mech., 754 (2014), 332–364 | DOI

[4] Chhabra R. P., Richardson J. F., Non-Newtonian flow and applied rheology: Engineering applications, Elsevier, Oxford, 2008

[5] Coussot P., Mudflow rheology and dynamics, A. A. Balkema, Rotterdam, 1997

[6] Dent J. D., Lang T. E., “Modeling of snow flow”, J. Glaciol., 26:94 (1980), 131–140 | DOI

[7] Eglit M. E., “Some mathematical models of snow avalanches”, Advances in the mechanics and the flow of granular materials, v. 2, ed. M. Shahinpoor, Trans Tech Publ., Clausthal-Zellerfeld, 1983, 577–588

[8] Eglit M. E., Demidov K. S., “Mathematical modeling of snow entrainment in avalanche motion”, Cold Reg. Sci. Technol., 43:1–2 (2005), 10–23 | DOI

[9] Eglit M. E., Yakubenko A. E., “Numerical modeling of slope flows entraining bottom material”, Cold Reg. Sci. Technol., 108 (2014), 139–148 | DOI

[10] M. E. Eglit, A. E. Yakubenko, “Effect of the bottom material capture and the non-Newtonian rheology on the dynamics of turbulent downslope flows”, Fluid Dyn., 51 (2016), 299–310 | DOI | DOI | MR

[11] Eglit M. E., Yakubenko A. E., Yakubenko T. A., “Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study”, J. Phys.: Conf. Ser., 894:1 (2017), 012111 | DOI

[12] Gavrilov A. A., Rudyak V. Ya., “A model of averaged molecular viscosity for turbulent flow of non-Newtonian fluids”, J. Sib. Fed. Univ. Math. Phys., 7:1 (2014), 46–57

[13] Huang X., García M. H., “A Herschel–Bulkley model for mud flow down a slope”, J. Fluid Mech., 374 (1998), 305–333 | DOI

[14] Issler D., Pastor Pérez M., “Interplay of entrainment and rheology in snow avalanches: A numerical study”, Ann. Glaciol., 52:58 (2011), 143–147 | DOI

[15] Kern M. A., Tiefenbacher F., McElwaine J. N., “The rheology of snow in large chute flows”, Cold Reg. Sci. Technol., 39:2–3 (2004), 181–192 | DOI

[16] Khorshidi J., Niazi S., Davari H., Mahmeli Abyaneh M., Mahmoodzadeh A., “Turbulent modeling for non-Newtonian fluid in an eccentric annulus”, Can. J. Pure Appl. Sci., 7:2 (2013), 2425–2430

[17] Kulibaba V. S., Eglit M. E., “Numerical modeling of an avalanche impact against an obstacle with account of snow compressibility”, Ann. Glaciol., 49 (2008), 27–32 | DOI

[18] V. G. Lushchik, A. A. Pavel'ev, A. E. Yakubenko, “Three-parameter model of shear turbulence”, Fluid Dyn., 13 (1978), 350–360 | DOI

[19] Nakamura M., Sawada T., “A $k$–$\varepsilon $ model for the turbulent analysis of Bingham plastic fluid”, Trans. Jpn. Soc. Mech. Eng. B, 52:479 (1986), 2544–2552 | DOI

[20] Nishimura K., Maeno N., “Contribution of viscous forces to avalanche dynamics”, Ann. Glaciol., 13 (1989), 202–206 | DOI

[21] D. I. Romanova, “3D avalanche flow modeling using OpenFOAM”, Tr. Inst. Sist. Program. Ross. Akad. Nauk, 29, no. 1, 2017, 85–100

[22] Sovilla B., Burlando P., Bartelt P., “Field experiments and numerical modeling of mass entrainment in snow avalanches”, J. Geophys. Res., 111:F3 (2006), Pap. F03007

[23] Yu. S. Zaiko, “Numerical modeling of downslope flows of different rheology”, Fluid Dyn., 51 (2016), 443–450 | DOI | DOI | MR