Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 146-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Couette flow of a viscoelastic medium is considered that is described by the Johnson–Segalman–Oldroyd model with two relaxation times. The development of singularities related to the appearance of internal discontinuities is studied both analytically and numerically within one-dimensional nonstationary hyperbolic models of viscoelastic Maxwell-type media. A numerical model for calculating nonstationary one-dimensional discontinuous solutions is constructed, discontinuous solutions are studied, and the hysteresis phenomenon, i.e., the dependence of the structure of a steady Couette flow on the prehistory of its formation, is analyzed.
@article{TRSPY_2018_300_a10,
     author = {V. Yu. Liapidevskii},
     title = {Couette flow of a~viscoelastic {Maxwell-type} medium with two relaxation times},
     journal = {Informatics and Automation},
     pages = {146--157},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a10/}
}
TY  - JOUR
AU  - V. Yu. Liapidevskii
TI  - Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
JO  - Informatics and Automation
PY  - 2018
SP  - 146
EP  - 157
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a10/
LA  - ru
ID  - TRSPY_2018_300_a10
ER  - 
%0 Journal Article
%A V. Yu. Liapidevskii
%T Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times
%J Informatics and Automation
%D 2018
%P 146-157
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a10/
%G ru
%F TRSPY_2018_300_a10
V. Yu. Liapidevskii. Couette flow of a~viscoelastic Maxwell-type medium with two relaxation times. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 146-157. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a10/

[1] Agassant J.-F., Covas J. A., “An overview of polymer processing modelling”, Advances in Material Forming: Esaform 10 years on, eds. F. Chinesta, E. Cueto, Springer, Paris, 2007, 37–59 | DOI

[2] Yu. A. Andrienko, M. A. Brutyan, I. F. Obraztsov, Yu. G. Yanovskii, “The spurt effect in the four-constant Oldroyd model of viscoelastic fluids”, Phys. Dokl., 42:1 (1997), 43–46 | MR

[3] Basombrio F. G., “Shocks in shear flows of the Johnson–Segalman type”, J. Non-Newtonian Fluid Mech., 49:1 (1993), 1–11 | DOI | MR

[4] M. A. Brutyan, P. L. Krapivskii, “Hydrodynamics of non-Newtonian fluids”, Complex and Special Branches of Mechanics, Itogi Nauki Tekh., 4, VINITI, Moscow, 1991, 3–98

[5] M. A. Brutyan, A. G. Kulikovskii, “Instability and nonuniqueness of quasisteady flows of a viscoelastic liquid”, Fluid Dyn., 31 (1996), 819–827 | DOI | MR

[6] Catheline S., Gennisson J.-L., Tanter M., Fink M., “Observation of shock transverse waves in elastic media”, Phys. Rev. Lett., 91:16 (2003), 164301 | DOI

[7] Denn M. M., “Extrusion instabilities and wall slip”, Annu. Rev. Fluid Mech., 33 (2001), 265–287 | DOI

[8] Fyrillas M. M., Georgiou G. C., Vlassopoulos D., “Time-dependent plane Poiseuille flow of a Johnson–Segalman fluid”, J. Non-Newtonian Fluid Mech., 82:1 (1999), 105–123 | DOI

[9] S. L. Gavrilyuk, “Problem of the decay of an arbitrary discontinuity for a Van der Waals gas”, Dynamics of a Fluid with Free Boundaries, Dinamika Sploshnoi Sredy, 69, Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibisrk, 1985, 36–54

[10] Guillopé C., Saut J.-C., “Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type”, Math. Model. Numer. Anal., 24:3 (1990), 369–401 | DOI | MR

[11] Hunter J. K., Slemrod M., “Viscoelastic fluid flow exhibiting hysteritic phase changes”, Phys. Fluids, 26:9 (1983), 2345–2351 | DOI

[12] Johnson M. W. (Jr.), Segalman D., “A model for viscoelastic fluid behavior which allows non-affine deformation”, J. Non-Newtonian Fluid Mech., 2:3 (1977), 255–270 | DOI

[13] Kolkka R. W., Malkus D. S., Hansen M. G., Ierley G. R., “Spurt phenomena of the Johnson–Segalman fluid and related models”, J. Non-Newtonian Fluid Mech., 29 (1988), 303–335 | DOI

[14] V. Yu. Liapidevskii, V. V. Pukhnachev, “Hyperbolic submodels of an incompressible viscoelastic Maxwell medium”, Proc. Steklov Inst. Math., 281 (2013), 77–90 | DOI | DOI | MR

[15] Liapidevskii V. Yu., Pukhnachev V. V., Tani A., “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Motion, 48:8 (2011), 727–737 | DOI | MR

[16] V. Yu. Liapidevskii, V. Teshukov, Mathematical Models of Propagation of Long Waves in an Inhomogeneous Fluid, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000 (in Russian)

[17] Malkus D. S., Nohel J. A., Plohr B. J., “Dynamics of shear flow of a non-Newtonian fluid”, J. Comput. Phys., 87:2 (1990), 464–487 | DOI | MR

[18] Malkus D. S., Nohel J. A., Plohr B. J., “Analysis of new phenomena in shear flow of non-newtonian fluids”, SIAM J. Appl. Math., 51:4 (1991), 899–929 | DOI | MR

[19] Oldroyd J. G., “Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids”, Proc. R. Soc. London A, 245 (1958), 278–297 | DOI | MR

[20] Olmsted P. D., “Perspectives on shear banding in complex fluids”, Rheol. Acta, 47:3 (2008), 283–300 | DOI

[21] Petrie C. J. S., Denn M. M., “Instabilities in polymer processing”, AIChE J., 22:2 (1976), 209–236 | DOI

[22] Renardy Y. Y., “Spurt and instability in a two-layer Johnson–Segalman liquid”, Theor. Comput. Fluid Dyn., 7:6 (1995), 463–475 | DOI

[23] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Am. Math. Soc., Providence, RI, 1983 | MR | MR

[24] I. M. Rutkevich, “Some general properties of the equations of viscoelastic incompressible fluid dynamics”, J. Appl. Math. Mech., 33 (1969), 30–39 | DOI | MR

[25] Vinogradov G. V., Malkin A. Ya., Yanovskii Yu. G., Borisenkova E. K., Yarlykov B. V., Berezhnaya G. V., “Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes”, J. Polym. Sci. Part A-2, 10:6 (1972), 1061–1084 | DOI