Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a9, author = {A. Laurin\v{c}ikas and R. Macaitien\.{e}}, title = {Discrete universality in the {Selberg} class}, journal = {Informatics and Automation}, pages = {155--169}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a9/} }
A. Laurinčikas; R. Macaitienė. Discrete universality in the Selberg class. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 155-169. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a9/
[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD Thesis, Indian Stat. Inst., Calcutta, 1981
[2] Bagchi B., “Recurrence in topological dynamics and the Riemann hypothesis”, Acta math. Hung., 50 (1987), 227–240 | DOI | MR | Zbl
[3] Billingsley P., Convergence of probability measures, J. Willey and Sons, New York, 1968 | MR | Zbl
[4] Bitar K.M., Khuri N.N., Ren H.C., “Path integrals and Voronin's theorem on the universality of the Riemann zeta function”, Ann. Phys., 211:1 (1991), 172–196 | DOI | MR | Zbl
[5] Buivydas E., Laurinčikas A., “A discrete version of the Mishou theorem”, Ramanujan J., 38:2 (2015), 331–347 | DOI | MR | Zbl
[6] Buivydas E., Laurinčikas A., Macaitienė R., Rašytė J., “Discrete universality theorems for the Hurwitz zeta-function”, J. Approx. Theory, 183 (2014), 1–13 | DOI | MR | Zbl
[7] Dubickas A., Laurinčikas A., “Distribution modulo 1 and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hamburg, 86:1 (2016), 79–87 | DOI | MR | Zbl
[8] Garunkštis R., “The effective universality theorem for the Riemann zeta function”, Proc. Session in Analytic Number Theory and Diophantine Equations (Bonn, 2002), Bonner Math. Schriften, 360, Univ. Bonn, Bonn, 2003 | MR | Zbl
[9] Garunkštis R., “Self-approximation of Dirichlet $L$-functions”, J. Number Theory, 131:7 (2011), 1286–1295 | DOI | MR | Zbl
[10] Garunkštis R., Laurinčikas A., “On one Hilbert's problem for the Lerch zeta-function”, Publ. Inst. Math. Nouv. Sér., 65 (79) (1999), 63–68 | MR | Zbl
[11] Garunkštis R., Laurinčikas A., Matsumoto K., Steuding J., Steuding R., “Effective uniform approximation by the Riemann zeta-function”, Publ. Math. Barc., 54:1 (2010), 209–219 | MR | Zbl
[12] Kaczorowski J., Perelli A., “The Selberg class: A survey”, Number theory in progress, Proc. Conf. in Honor of A. Schinzel (Zakopane, Poland, 1997), v. 2, eds. K. Györy et al., W. de Gruyter, Berlin, 1999, 953–992 | MR | Zbl
[13] Kaczorowski J., Perelli A., “On the structure of the Selberg class. I: $0\leq d\leq 1$”, Acta math., 182:2 (1999), 207–241 | DOI | MR | Zbl
[14] Karatsuba A.A., Voronin S.M., The Riemann zeta-function, W. de Gruyter, Berlin, 1992 | MR | Zbl
[15] Laurinčikas A., Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht, 1996 | MR
[16] Laurinčikas A., “On zeros of some analytic functions related to the Riemann zeta-function”, Glas. Mat., 48:1 (2013), 59–65 | DOI | MR | Zbl
[17] Laurinčikas A., “On the universality of the Hurwitz zeta-function”, Int. J. Number Theory, 9:1 (2013), 155–165 | DOI | MR
[18] Laurinčikas A., “A discrete universality theorem for the Hurwitz zeta-function”, J. Number Theory, 143 (2014), 232–247 | DOI | MR | Zbl
[19] Laurinčikas A., “Distribution modulo 1 and universality of the Hurwitz zeta-function”, J. Number Theory, 167 (2016), 294–303 | DOI | MR | Zbl
[20] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer, Dordrecht, 2002 | MR | Zbl
[21] Laurinčikas A., Macaitienė R., “The discrete universality of the periodic Hurwitz zeta function”, Integral Transforms Spec. Funct., 20 (2009), 673–686 | DOI | MR | Zbl
[22] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta arith., 98:4 (2001), 345–359 | DOI | MR | Zbl
[23] Laurinčikas A., Matsumoto K., Steuding J., “Discrete universality of $L$-functions of new forms. II”, Lith. Math. J., 56:2 (2016), 207–218 | DOI | MR | Zbl
[24] A. Laurinčikas, M. Stoncelis, and D. Šiaučiūnas, “On the zeros of some functions related to periodic zeta-functions”, Chebyshev. Sb., 15:1 (2014), 121–130 | MR
[25] R. Macaitienė, “Mixed joint universality for $L$-functions from Selberg's class and periodic Hurwitz zeta-functions”, Chebyshev. Sb., 16:1 (2015), 219–231 | MR
[26] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number theory: Plowing and starring through high wave forms, Proc. 7th China–Japan Semin., Ser. Number Theory Appl., 11, eds. M. Kaneko, S. Kanemitsu, J. Liu, World Scientific, Hackensack, NJ, 2015, 95–144 | DOI | MR | Zbl
[27] Mergelyan S.N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 ; S. N. Mergelyan, Uniform Approximations to Functions of a Complex Variable, AMS Transl., 101, Am. Math. Soc., Providence, RI, 1954 | MR | Zbl | MR
[28] Mishou H., Nagoshi H., “Functional distribution of $L(s,\chi _d)$ with real characters and denseness of quadratic class numbers”, Trans. Amer. Math. Soc., 358:10 (2006), 4343–4366 | DOI | MR | Zbl
[29] Montgomery H.L., Topics in multiplicative number theory, Lect. Notes Math., 227, Springer, Berlin, 1971 | DOI | MR | Zbl
[30] Morris S.A., Pontryagin duality and the structure of locally compact abelian groups, LMS Lect. Note Ser., 29, Cambridge Univ. Press, Cambridge, 1977 | MR | Zbl
[31] Nagoshi H., Steuding J., “Universality for $L$-functions in the Selberg class”, Lith. Math. J., 50:3 (2010), 293–311 | DOI | MR | Zbl
[32] Nakamura T., “The generalized strong recurrence for non-zero rational parameters”, Arch. Math., 95:6 (2010), 549–555 | DOI | MR | Zbl
[33] Nakamura T., Pańkowski Ł., “Self-approximation for the Riemann zeta function”, Bull. Aust. Math. Soc., 87:3 (2013), 452–461 | DOI | MR | Zbl
[34] Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math., 34 (1980), 440–451 | DOI | MR | Zbl
[35] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proc. Amalfi Conf. on Analytic Number Theory (Maiori, Italy, 1989), eds. E. Bombieri et al., Univ. Salerno, Salerno, 1992, 367–385 | MR | Zbl
[36] Steuding J., “Upper bounds for the density of universality”, Acta arith., 107:2 (2003), 195–202 | DOI | MR | Zbl
[37] Steuding J., “Upper bounds for the density of universality. II”, Acta math. Univ. Ostrav., 13:1 (2005), 73–82 | MR | Zbl
[38] Steuding J., Value-distribution of $L$-functions, Lect. Notes Math., 1877, Springer, Berlin, 2007 | MR | Zbl
[39] S. M. Voronin, “On the distribution of nonzero values of the Riemann $\zeta $-function”, Proc. Steklov Inst. Math., 128 (1972), 153–175 | MR | Zbl
[40] S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function”, Math. USSR, Izv., 9:3 (1975), 443–453 | DOI | MR
[41] S. M. Voronin, “On the functional independence of the Dirichlet $L$-function”, Acta Arith., 27 (1975), 493–503 | DOI | Zbl
[42] S. M. Voronin, Analytic properties of generating Dirichlet functions of arithmetical objects, Doctoral (Phys.–Math.) Dissertation, Steklov Math. Inst., M., 1977