Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a7, author = {J. Kaczorowski and A. Perelli}, title = {Internal twists of $L$-functions. {II}}, journal = {Informatics and Automation}, pages = {127--143}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/} }
J. Kaczorowski; A. Perelli. Internal twists of $L$-functions. II. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 127-143. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/
[1] Kaczorowski J., “Axiomatic theory of $L$-functions: The Selberg class”, Analytic number theory, C.I.M.E. Summer School (Cetraro, Italy, 2002), Lect. Notes Math., 1891, eds. A. Perelli, C. Viola, Springer, Berlin, 2006, 133–209 | DOI | MR
[2] Kaczorowski J., Molteni G., Perelli A., “Linear independence of $L$-functions”, Forum math., 18:1 (2006), 1–7 | DOI | MR | Zbl
[3] Kaczorowski J., Perelli A., “On the structure of the Selberg class. I: $0 \leq d \leq 1$”, Acta math., 182:2 (1999), 207–241 | DOI | MR | Zbl
[4] Kaczorowski J., Perelli A., “The Selberg class: A survey”, Number theory in progress, Proc. Conf. in honor of A. Schinzel (Zakopane, Poland, 1997), v. 2, eds. K. Györy et al., de Gruyter, Berlin, 1999, 953–992 | MR | Zbl
[5] Kaczorowski J., Perelli A., “Internal twists of $L$-functions”, Number theory, analysis, and combinatorics, eds. J. Pintz et al., De Gruyter, Berlin, 2014, 145–154 | MR
[6] Kaczorowski J., Perelli A., “Twists and resonance of $L$-functions. I”, J. Eur. Math. Soc., 18:6 (2016), 1349–1389 | DOI | MR | Zbl
[7] Kaczorowski J., Perelli A., “Twists and resonance of $L$-functions. II”, Int. Math. Res. Not., 2016:24 (2016), 7637–7670 | DOI | MR
[8] Kaczorowski J., Perelli A., “Some remarks on the convergence of the Dirichlet series of $L$-functions and related questions”, Math. Z., 285:3–4 (2017), 1345–1355 | DOI | MR | Zbl
[9] Montgomery H.L., Vaughan R.C., Multiplicative number theory. I: Classical theory, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[10] Perelli A., “A survey of the Selberg class of $L$-functions. I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl
[11] Perelli A., “A survey of the Selberg class of $L$-functions. II”, Riv. Mat. Univ. Parma. Ser. 7, 3* (2004), 83–118 | MR | Zbl
[12] Perelli A., “Non-linear twists of $L$-functions: a survey”, Milan J. Math., 78:1 (2010), 117–134 | DOI | MR | Zbl
[13] Ritt J.F., “On the zeros of exponential polynomials”, Trans. Amer. Math. Soc., 31 (1929), 680–686 | DOI | MR | Zbl