Internal twists of $L$-functions. II
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 127-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear twist $F(s;f)$ of a function $F(s)$ from the extended Selberg class $\mathcal S^\sharp $ is called internal if it belongs to $\mathcal S^\sharp $. In a previous paper (2014) we showed that, inside a rather general class of nonlinear twists, the internal twists occur only in very special cases; moreover, we gave a first characterization of such twists. Here we complete our previous work by giving a fully detailed description of such internal twists.
Keywords: $L$-functions, Selberg class, twists.
@article{TRSPY_2017_299_a7,
     author = {J. Kaczorowski and A. Perelli},
     title = {Internal twists of $L$-functions. {II}},
     journal = {Informatics and Automation},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/}
}
TY  - JOUR
AU  - J. Kaczorowski
AU  - A. Perelli
TI  - Internal twists of $L$-functions. II
JO  - Informatics and Automation
PY  - 2017
SP  - 127
EP  - 143
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/
LA  - ru
ID  - TRSPY_2017_299_a7
ER  - 
%0 Journal Article
%A J. Kaczorowski
%A A. Perelli
%T Internal twists of $L$-functions. II
%J Informatics and Automation
%D 2017
%P 127-143
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/
%G ru
%F TRSPY_2017_299_a7
J. Kaczorowski; A. Perelli. Internal twists of $L$-functions. II. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 127-143. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/

[1] Kaczorowski J., “Axiomatic theory of $L$-functions: The Selberg class”, Analytic number theory, C.I.M.E. Summer School (Cetraro, Italy, 2002), Lect. Notes Math., 1891, eds. A. Perelli, C. Viola, Springer, Berlin, 2006, 133–209 | DOI | MR

[2] Kaczorowski J., Molteni G., Perelli A., “Linear independence of $L$-functions”, Forum math., 18:1 (2006), 1–7 | DOI | MR | Zbl

[3] Kaczorowski J., Perelli A., “On the structure of the Selberg class. I: $0 \leq d \leq 1$”, Acta math., 182:2 (1999), 207–241 | DOI | MR | Zbl

[4] Kaczorowski J., Perelli A., “The Selberg class: A survey”, Number theory in progress, Proc. Conf. in honor of A. Schinzel (Zakopane, Poland, 1997), v. 2, eds. K. Györy et al., de Gruyter, Berlin, 1999, 953–992 | MR | Zbl

[5] Kaczorowski J., Perelli A., “Internal twists of $L$-functions”, Number theory, analysis, and combinatorics, eds. J. Pintz et al., De Gruyter, Berlin, 2014, 145–154 | MR

[6] Kaczorowski J., Perelli A., “Twists and resonance of $L$-functions. I”, J. Eur. Math. Soc., 18:6 (2016), 1349–1389 | DOI | MR | Zbl

[7] Kaczorowski J., Perelli A., “Twists and resonance of $L$-functions. II”, Int. Math. Res. Not., 2016:24 (2016), 7637–7670 | DOI | MR

[8] Kaczorowski J., Perelli A., “Some remarks on the convergence of the Dirichlet series of $L$-functions and related questions”, Math. Z., 285:3–4 (2017), 1345–1355 | DOI | MR | Zbl

[9] Montgomery H.L., Vaughan R.C., Multiplicative number theory. I: Classical theory, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[10] Perelli A., “A survey of the Selberg class of $L$-functions. I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl

[11] Perelli A., “A survey of the Selberg class of $L$-functions. II”, Riv. Mat. Univ. Parma. Ser. 7, 3* (2004), 83–118 | MR | Zbl

[12] Perelli A., “Non-linear twists of $L$-functions: a survey”, Milan J. Math., 78:1 (2010), 117–134 | DOI | MR | Zbl

[13] Ritt J.F., “On the zeros of exponential polynomials”, Trans. Amer. Math. Soc., 31 (1929), 680–686 | DOI | MR | Zbl