Internal twists of $L$-functions. II
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 127-143

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear twist $F(s;f)$ of a function $F(s)$ from the extended Selberg class $\mathcal S^\sharp $ is called internal if it belongs to $\mathcal S^\sharp $. In a previous paper (2014) we showed that, inside a rather general class of nonlinear twists, the internal twists occur only in very special cases; moreover, we gave a first characterization of such twists. Here we complete our previous work by giving a fully detailed description of such internal twists.
Keywords: $L$-functions, Selberg class, twists.
@article{TRSPY_2017_299_a7,
     author = {J. Kaczorowski and A. Perelli},
     title = {Internal twists of $L$-functions. {II}},
     journal = {Informatics and Automation},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/}
}
TY  - JOUR
AU  - J. Kaczorowski
AU  - A. Perelli
TI  - Internal twists of $L$-functions. II
JO  - Informatics and Automation
PY  - 2017
SP  - 127
EP  - 143
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/
LA  - ru
ID  - TRSPY_2017_299_a7
ER  - 
%0 Journal Article
%A J. Kaczorowski
%A A. Perelli
%T Internal twists of $L$-functions. II
%J Informatics and Automation
%D 2017
%P 127-143
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/
%G ru
%F TRSPY_2017_299_a7
J. Kaczorowski; A. Perelli. Internal twists of $L$-functions. II. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 127-143. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a7/