An approximate functional equation for the primitive of Hardy's function
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula of Atkinson type for the primitive of Hardy's function is generalized to the case where the lengths of the two sums involved in that formula vary in wide ranges.
@article{TRSPY_2017_299_a6,
     author = {Matti Jutila},
     title = {An approximate functional equation for the primitive of {Hardy's} function},
     journal = {Informatics and Automation},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a6/}
}
TY  - JOUR
AU  - Matti Jutila
TI  - An approximate functional equation for the primitive of Hardy's function
JO  - Informatics and Automation
PY  - 2017
SP  - 118
EP  - 126
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a6/
LA  - ru
ID  - TRSPY_2017_299_a6
ER  - 
%0 Journal Article
%A Matti Jutila
%T An approximate functional equation for the primitive of Hardy's function
%J Informatics and Automation
%D 2017
%P 118-126
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a6/
%G ru
%F TRSPY_2017_299_a6
Matti Jutila. An approximate functional equation for the primitive of Hardy's function. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 118-126. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a6/

[1] Atkinson F.V., “The mean-value of the Riemann zeta function”, Acta math., 81 (1949), 353–376 | DOI | MR | Zbl

[2] Bourgain J., “Decoupling, exponential sums and the Riemann zeta function”, J. Amer. Math. Soc., 30:1 (2017), 205–224 | DOI | MR | Zbl

[3] Huxley M.N., Area, lattice points, and exponential sums, Clarendon Press, Oxford, 1996 | MR | Zbl

[4] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 ; The Riemann zeta-function: Theory and applications, Dover Publ., Mineola, NY, 2003 (reprint of the 1985 original) | MR | Zbl | MR | Zbl

[5] Ivić A., The theory of Hardy's $Z$-function, Cambridge Univ. Press, Cambridge, 2013 | Zbl

[6] Jutila M., “Transformation formulae for Dirichlet polynomials”, J. Number Theory, 18 (1984), 135–156 | DOI | MR | Zbl

[7] Jutila M., Lectures on a method in the theory of exponential sums, Tata Lect. Math. Phys., 80, Springer, Berlin; Tata Inst. Fundam. Res., Bombay, 1987 | MR

[8] Jutila M., “Atkinson's formula for Hardy's function”, J. Number Theory, 129:11 (2009), 2853–2878 | DOI | MR | Zbl

[9] M. Jutila, “Transformations of zeta-sums”, Proc. Steklov Inst. Math., 276 (2012), 149–155 | DOI | MR | Zbl

[10] A. A. Karatsuba, “On the distance between adjacent zeros of the Riemann zeta function lying on the critical line”, Proc. Steklov Inst. Math., 157 (1983), 51–66 | MR | Zbl | Zbl

[11] M. A. Korolev, “On the integral of Hardy's function $Z(t)$”, Izv. Math., 72:3 (2008), 429–478 | DOI | DOI | MR | Zbl

[12] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., ed. D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl