Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a4, author = {Ghaith A. Hiary}, title = {Asymptotics and formulas for cubic exponential sums}, journal = {Informatics and Automation}, pages = {86--104}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/} }
Ghaith A. Hiary. Asymptotics and formulas for cubic exponential sums. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 86-104. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/
[1] Bombieri E., Iwaniec H., “On the order of $\zeta (\frac 12+it)$”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 13:3 (1986), 449–472 | MR | Zbl
[2] Davenport H., Multiplicative number theory, with a preface by H.L. Montgomery, Grad. Texts Math., 74, 3rd ed. rev., Springer, New York, 2000 | MR | Zbl
[3] Fiedler H., Jurkat W., Körner O., “Asymptotic expansions of finite theta series”, Acta arith., 32:2 (1977), 129–146 | DOI | MR | Zbl
[4] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation. II: The trigonometrical series associated with the elliptic $\vartheta $-functions”, Acta math., 37 (1914), 193–239 | DOI | MR | Zbl
[5] Hiary G.A., “Fast methods to compute the Riemann zeta function”, Ann. Math. Ser. 2, 174:2 (2011), 891–946 | DOI | MR | Zbl
[6] M. A. Korolev, “On incomplete Gaussian sums”, Proc. Steklov Inst. Math., 290 (2015), 52–62 | DOI | MR | Zbl
[7] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., ed. D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl