Asymptotics and formulas for cubic exponential sums
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 86-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several asymptotic expansions and formulas for cubic exponential sums are derived. The expansions are most useful when the cubic coefficient is in a restricted range. This generalizes previous results in the quadratic case and helps to clarify how to numerically approximate cubic exponential sums and how to obtain upper bounds for them in some cases.
Keywords: cubic exponential sums, van der Corput iteration.
@article{TRSPY_2017_299_a4,
     author = {Ghaith A. Hiary},
     title = {Asymptotics and formulas for cubic exponential sums},
     journal = {Informatics and Automation},
     pages = {86--104},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/}
}
TY  - JOUR
AU  - Ghaith A. Hiary
TI  - Asymptotics and formulas for cubic exponential sums
JO  - Informatics and Automation
PY  - 2017
SP  - 86
EP  - 104
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/
LA  - ru
ID  - TRSPY_2017_299_a4
ER  - 
%0 Journal Article
%A Ghaith A. Hiary
%T Asymptotics and formulas for cubic exponential sums
%J Informatics and Automation
%D 2017
%P 86-104
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/
%G ru
%F TRSPY_2017_299_a4
Ghaith A. Hiary. Asymptotics and formulas for cubic exponential sums. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 86-104. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a4/

[1] Bombieri E., Iwaniec H., “On the order of $\zeta (\frac 12+it)$”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 13:3 (1986), 449–472 | MR | Zbl

[2] Davenport H., Multiplicative number theory, with a preface by H.L. Montgomery, Grad. Texts Math., 74, 3rd ed. rev., Springer, New York, 2000 | MR | Zbl

[3] Fiedler H., Jurkat W., Körner O., “Asymptotic expansions of finite theta series”, Acta arith., 32:2 (1977), 129–146 | DOI | MR | Zbl

[4] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation. II: The trigonometrical series associated with the elliptic $\vartheta $-functions”, Acta math., 37 (1914), 193–239 | DOI | MR | Zbl

[5] Hiary G.A., “Fast methods to compute the Riemann zeta function”, Ann. Math. Ser. 2, 174:2 (2011), 891–946 | DOI | MR | Zbl

[6] M. A. Korolev, “On incomplete Gaussian sums”, Proc. Steklov Inst. Math., 290 (2015), 52–62 | DOI | MR | Zbl

[7] Titchmarsh E.C., The theory of the Riemann zeta-function, 2nd ed., ed. D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl