Symmetry and short interval mean-squares
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 62-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The weighted Selberg integral is a discrete mean-square that generalizes the classical Selberg integral of primes to an arithmetic function $f$, whose values in a short interval are suitably attached to a weight function. We give conditions on $f$ and select a particular class of weights in order to investigate non-trivial bounds of weighted Selberg integrals of both $f$ and $f*\mu $. In particular, we discuss the cases of the symmetry integral and the modified Selberg integral, the latter involving the Cesaro weight. We also prove some side results when $f$ is a divisor function.
Keywords: mean square, short interval, symmetry, correlation.
@article{TRSPY_2017_299_a3,
     author = {Giovanni Coppola and Maurizio Laporta},
     title = {Symmetry and short interval mean-squares},
     journal = {Informatics and Automation},
     pages = {62--85},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/}
}
TY  - JOUR
AU  - Giovanni Coppola
AU  - Maurizio Laporta
TI  - Symmetry and short interval mean-squares
JO  - Informatics and Automation
PY  - 2017
SP  - 62
EP  - 85
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/
LA  - ru
ID  - TRSPY_2017_299_a3
ER  - 
%0 Journal Article
%A Giovanni Coppola
%A Maurizio Laporta
%T Symmetry and short interval mean-squares
%J Informatics and Automation
%D 2017
%P 62-85
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/
%G ru
%F TRSPY_2017_299_a3
Giovanni Coppola; Maurizio Laporta. Symmetry and short interval mean-squares. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 62-85. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/

[1] Coppola G., “On the symmetry of square-free supported arithmetical functions in short intervals”, J. Inequal. Pure Appl. Math., 5:2 (2004), 33 | MR | Zbl

[2] Coppola G., On the symmetry of arithmetical functions in almost all short intervals. V, E-print, 2009, arXiv: 0901.4738 [math.NT] | MR

[3] Coppola G., On the modified Selberg integral, E-print, 2010, arXiv: 1006.1229 [math.NT] | MR

[4] Coppola G., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals”, J. Comb. Number Theory, 2:2 (2010), 91–105 | MR | Zbl

[5] Coppola G., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals. II”, Int. J. Pure Appl. Math., 58:3 (2010), 281–298 | MR | Zbl

[6] Coppola G., “On the Selberg integral of the $k$-divisor function and the $2k$-th moment of the Riemann zeta-function”, Publ. Inst. Math. Nouv. Sér., 88 (102) (2010), 99–110 | DOI | MR | Zbl

[7] Coppola G., Laporta M., “Generations of correlation averages”, J. Numbers, 2014 (2014), 140840 | DOI

[8] Coppola G., Laporta M., “A generalization of Gallagher's lemma for exponential sums”, Šiauliai Math. Semin., 10:18 (2015), 29–47 | MR

[9] Coppola G., Laporta M., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals. III”, Moscow J. Comb. Number Theory, 6:1 (2016), 3–24 | MR | Zbl

[10] Coppola G., Laporta M., “Sieve functions in arithmetic bands”, Hardy–Ramanujan J., 39 (2016), 21–37 | MR | Zbl

[11] Coppola G., Salerno S., “On the symmetry of the divisor function in almost all short intervals”, Acta arith., 113:2 (2004), 189–201 | DOI | MR | Zbl

[12] Davenport H., Multiplicative number theory, Grad. Texts Math., 74, 3rd ed., Springer, New York, 2000 | MR | Zbl

[13] Duke W., Friedlander J., Iwaniec H., “Bilinear forms with Kloosterman fractions”, Invent. math., 128:1 (1997), 23–43 | DOI | MR | Zbl

[14] Huxley M.N., “On the difference between consecutive primes”, Invent. math., 15:2 (1972), 164–170 | DOI | MR | Zbl

[15] Ivić A., “On the mean square of the divisor function in short intervals”, J. théor. nombres Bord., 21:2 (2009), 251–261 | DOI | MR | Zbl

[16] Kaczorowski J., Perelli A., “On the distribution of primes in short intervals”, J. Math. Soc. Japan, 45:3 (1993), 447–458 | DOI | MR | Zbl

[17] Kolesnik G., “On the estimation of multiple exponential sums”, Recent progress in analytic number theory, Durham Symp. (1979), v. 1, Acad. Press, London, 1981, 231–246 | MR

[18] Selberg A., “On the normal density of primes in small intervals, and the difference between consecutive primes”, Arch. Math. Naturvid., 47:6 (1943), 87–105 | MR | Zbl