Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a3, author = {Giovanni Coppola and Maurizio Laporta}, title = {Symmetry and short interval mean-squares}, journal = {Informatics and Automation}, pages = {62--85}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/} }
Giovanni Coppola; Maurizio Laporta. Symmetry and short interval mean-squares. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 62-85. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a3/
[1] Coppola G., “On the symmetry of square-free supported arithmetical functions in short intervals”, J. Inequal. Pure Appl. Math., 5:2 (2004), 33 | MR | Zbl
[2] Coppola G., On the symmetry of arithmetical functions in almost all short intervals. V, E-print, 2009, arXiv: 0901.4738 [math.NT] | MR
[3] Coppola G., On the modified Selberg integral, E-print, 2010, arXiv: 1006.1229 [math.NT] | MR
[4] Coppola G., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals”, J. Comb. Number Theory, 2:2 (2010), 91–105 | MR | Zbl
[5] Coppola G., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals. II”, Int. J. Pure Appl. Math., 58:3 (2010), 281–298 | MR | Zbl
[6] Coppola G., “On the Selberg integral of the $k$-divisor function and the $2k$-th moment of the Riemann zeta-function”, Publ. Inst. Math. Nouv. Sér., 88 (102) (2010), 99–110 | DOI | MR | Zbl
[7] Coppola G., Laporta M., “Generations of correlation averages”, J. Numbers, 2014 (2014), 140840 | DOI
[8] Coppola G., Laporta M., “A generalization of Gallagher's lemma for exponential sums”, Šiauliai Math. Semin., 10:18 (2015), 29–47 | MR
[9] Coppola G., Laporta M., “On the correlations, Selberg integral and symmetry of sieve functions in short intervals. III”, Moscow J. Comb. Number Theory, 6:1 (2016), 3–24 | MR | Zbl
[10] Coppola G., Laporta M., “Sieve functions in arithmetic bands”, Hardy–Ramanujan J., 39 (2016), 21–37 | MR | Zbl
[11] Coppola G., Salerno S., “On the symmetry of the divisor function in almost all short intervals”, Acta arith., 113:2 (2004), 189–201 | DOI | MR | Zbl
[12] Davenport H., Multiplicative number theory, Grad. Texts Math., 74, 3rd ed., Springer, New York, 2000 | MR | Zbl
[13] Duke W., Friedlander J., Iwaniec H., “Bilinear forms with Kloosterman fractions”, Invent. math., 128:1 (1997), 23–43 | DOI | MR | Zbl
[14] Huxley M.N., “On the difference between consecutive primes”, Invent. math., 15:2 (1972), 164–170 | DOI | MR | Zbl
[15] Ivić A., “On the mean square of the divisor function in short intervals”, J. théor. nombres Bord., 21:2 (2009), 251–261 | DOI | MR | Zbl
[16] Kaczorowski J., Perelli A., “On the distribution of primes in short intervals”, J. Math. Soc. Japan, 45:3 (1993), 447–458 | DOI | MR | Zbl
[17] Kolesnik G., “On the estimation of multiple exponential sums”, Recent progress in analytic number theory, Durham Symp. (1979), v. 1, Acad. Press, London, 1981, 231–246 | MR
[18] Selberg A., “On the normal density of primes in small intervals, and the difference between consecutive primes”, Arch. Math. Naturvid., 47:6 (1943), 87–105 | MR | Zbl