Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a15, author = {D. I. Tolev}, title = {On a {Diophantine} inequality with prime numbers of a special type}, journal = {Informatics and Automation}, pages = {261--282}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/} }
D. I. Tolev. On a Diophantine inequality with prime numbers of a special type. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 261-282. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/
[1] Baker R., Weingartner A., “A ternary Diophantine inequality over primes”, Acta arith., 162:2 (2014), 159–196 | DOI | MR | Zbl
[2] Brüdern J., Fouvry E., “Lagrange's Four Squares Theorem with almost prime variables”, J. reine angew. Math., 454 (1994), 59–96 | MR | Zbl
[3] Chen J.R., “On the representation of a larger even integer as the sum of a prime and the product of at most two primes”, Sci. Sin., 16 (1973), 157–176 | MR | Zbl
[4] Davenport H., Multiplicative number theory, 2nd ed., Springer, New York, 1980 | MR | Zbl
[5] S. I. Dimitrov, Investigation of Diophantine inequalities and arithmetic progressions with methods of number theory, PhD Thesis, Tech. Univ., Sofia, 2016
[6] Dimitrov S.I., “A ternary Diophantine inequality over special primes”, JP J. Algebra Number Theory Appl., 39:3 (2017), 335–368 | DOI | Zbl
[7] Dimitrov S.I., Todorova T.L., “Diophantine approximation by prime numbers of a special form”, Annu. Univ. Sofia. Fac. Math. Inform., 102 (2015), 71–90 | MR
[8] Greaves G., Sieves in number theory, Springer, Berlin, 2001 | MR | Zbl
[9] Iwaniec H., Kowalski E., Analytic number theory, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[10] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR | Zbl
[11] Matomäki K., “A Bombieri–Vinogradov type exponential sum result with applications”, J. Number Theory, 129:9 (2009), 2214–2225 | DOI | MR | Zbl
[12] Matomäki K., Shao X., “Vinogradov's three primes theorems with almost twin primes”, Compos. math., 153:6 (2017), 1220–1256, arXiv: 1512.03213v1 [math.NT] | DOI | MR | Zbl
[13] Montgomery H.L., Topics in multiplicative number theory, Springer, Berlin, 1971 | MR | Zbl
[14] B. I. Segal, “On a theorem analogous to Waring's theorem”, Dokl. Akad. Nauk SSSR, 1933, no. 2, 47–49
[15] Titchmarsh E.C., The theory of the Riemann zeta-function, ed. D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl
[16] Tolev D.I., “On a diophantine inequality involving prime numbers”, Acta arith., 61:3 (1992), 289–306 | DOI | MR | Zbl
[17] Tolev D.I., “Arithmetic progressions of prime-almost-prime twins”, Acta arith., 88:1 (1999), 67–98 | DOI | MR | Zbl
[18] Tolev D.I., “Representations of large integers as sums of two primes of special type”, Algebraic number theory and diophantine analysis, Proc. Int. Conf. (Graz, 1998), W. de Gruyter, Berlin, 2000, 485–495 | MR | Zbl
[19] Tolev D.I., “Additive problems with prime numbers of special type”, Acta arith., 96:11 (2000), 53–88 | DOI | MR | Zbl
[20] Vaughan R.C., “An elementary method in prime number theory”, Acta arith., 37:1 (1980), 111–115 | DOI | MR | Zbl
[21] I. M. Vinogradov, “Representation of an odd number as a sum of three primes”, Dokl. Akad. Nauk SSSR, 15:6–7 (1937), 291–294