On a Diophantine inequality with prime numbers of a special type
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 261-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Diophantine inequality $|p_1^c+p_2^c+p_3^c-N|(\log N)^{-E}$, where $1$, $N$ is a sufficiently large real number and $E>0$ is an arbitrarily large constant. We prove that the above inequality has a solution in primes $p_1$, $p_2$, $p_3$ such that each of the numbers $p_1+2$, $p_2+2$ and $p_3+2$ has at most $[369/(180-168c)]$ prime factors, counted with multiplicity.
@article{TRSPY_2017_299_a15,
     author = {D. I. Tolev},
     title = {On a {Diophantine} inequality with prime numbers of a special type},
     journal = {Informatics and Automation},
     pages = {261--282},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On a Diophantine inequality with prime numbers of a special type
JO  - Informatics and Automation
PY  - 2017
SP  - 261
EP  - 282
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/
LA  - ru
ID  - TRSPY_2017_299_a15
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On a Diophantine inequality with prime numbers of a special type
%J Informatics and Automation
%D 2017
%P 261-282
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/
%G ru
%F TRSPY_2017_299_a15
D. I. Tolev. On a Diophantine inequality with prime numbers of a special type. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 261-282. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/

[1] Baker R., Weingartner A., “A ternary Diophantine inequality over primes”, Acta arith., 162:2 (2014), 159–196 | DOI | MR | Zbl

[2] Brüdern J., Fouvry E., “Lagrange's Four Squares Theorem with almost prime variables”, J. reine angew. Math., 454 (1994), 59–96 | MR | Zbl

[3] Chen J.R., “On the representation of a larger even integer as the sum of a prime and the product of at most two primes”, Sci. Sin., 16 (1973), 157–176 | MR | Zbl

[4] Davenport H., Multiplicative number theory, 2nd ed., Springer, New York, 1980 | MR | Zbl

[5] S. I. Dimitrov, Investigation of Diophantine inequalities and arithmetic progressions with methods of number theory, PhD Thesis, Tech. Univ., Sofia, 2016

[6] Dimitrov S.I., “A ternary Diophantine inequality over special primes”, JP J. Algebra Number Theory Appl., 39:3 (2017), 335–368 | DOI | Zbl

[7] Dimitrov S.I., Todorova T.L., “Diophantine approximation by prime numbers of a special form”, Annu. Univ. Sofia. Fac. Math. Inform., 102 (2015), 71–90 | MR

[8] Greaves G., Sieves in number theory, Springer, Berlin, 2001 | MR | Zbl

[9] Iwaniec H., Kowalski E., Analytic number theory, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[10] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR | Zbl

[11] Matomäki K., “A Bombieri–Vinogradov type exponential sum result with applications”, J. Number Theory, 129:9 (2009), 2214–2225 | DOI | MR | Zbl

[12] Matomäki K., Shao X., “Vinogradov's three primes theorems with almost twin primes”, Compos. math., 153:6 (2017), 1220–1256, arXiv: 1512.03213v1 [math.NT] | DOI | MR | Zbl

[13] Montgomery H.L., Topics in multiplicative number theory, Springer, Berlin, 1971 | MR | Zbl

[14] B. I. Segal, “On a theorem analogous to Waring's theorem”, Dokl. Akad. Nauk SSSR, 1933, no. 2, 47–49

[15] Titchmarsh E.C., The theory of the Riemann zeta-function, ed. D.R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl

[16] Tolev D.I., “On a diophantine inequality involving prime numbers”, Acta arith., 61:3 (1992), 289–306 | DOI | MR | Zbl

[17] Tolev D.I., “Arithmetic progressions of prime-almost-prime twins”, Acta arith., 88:1 (1999), 67–98 | DOI | MR | Zbl

[18] Tolev D.I., “Representations of large integers as sums of two primes of special type”, Algebraic number theory and diophantine analysis, Proc. Int. Conf. (Graz, 1998), W. de Gruyter, Berlin, 2000, 485–495 | MR | Zbl

[19] Tolev D.I., “Additive problems with prime numbers of special type”, Acta arith., 96:11 (2000), 53–88 | DOI | MR | Zbl

[20] Vaughan R.C., “An elementary method in prime number theory”, Acta arith., 37:1 (1980), 111–115 | DOI | MR | Zbl

[21] I. M. Vinogradov, “Representation of an odd number as a sum of three primes”, Dokl. Akad. Nauk SSSR, 15:6–7 (1937), 291–294