On a Diophantine inequality with prime numbers of a special type
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 261-282

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Diophantine inequality $|p_1^c+p_2^c+p_3^c-N|(\log N)^{-E}$, where $1$, $N$ is a sufficiently large real number and $E>0$ is an arbitrarily large constant. We prove that the above inequality has a solution in primes $p_1$, $p_2$, $p_3$ such that each of the numbers $p_1+2$, $p_2+2$ and $p_3+2$ has at most $[369/(180-168c)]$ prime factors, counted with multiplicity.
@article{TRSPY_2017_299_a15,
     author = {D. I. Tolev},
     title = {On a {Diophantine} inequality with prime numbers of a special type},
     journal = {Informatics and Automation},
     pages = {261--282},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/}
}
TY  - JOUR
AU  - D. I. Tolev
TI  - On a Diophantine inequality with prime numbers of a special type
JO  - Informatics and Automation
PY  - 2017
SP  - 261
EP  - 282
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/
LA  - ru
ID  - TRSPY_2017_299_a15
ER  - 
%0 Journal Article
%A D. I. Tolev
%T On a Diophantine inequality with prime numbers of a special type
%J Informatics and Automation
%D 2017
%P 261-282
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/
%G ru
%F TRSPY_2017_299_a15
D. I. Tolev. On a Diophantine inequality with prime numbers of a special type. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 261-282. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a15/