Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 203-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our previous papers, within the theory of the Riemann zeta-function we have introduced the following notions: Jacob's ladders, oscillating systems, $\zeta $-factorization, metamorphoses, etc. In this paper we obtain a $\zeta $-analogue of an elementary trigonometric identity and other interactions between oscillating systems.
Keywords: Riemann zeta-function.
@article{TRSPY_2017_299_a12,
     author = {Jan Moser},
     title = {Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity},
     journal = {Informatics and Automation},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/}
}
TY  - JOUR
AU  - Jan Moser
TI  - Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
JO  - Informatics and Automation
PY  - 2017
SP  - 203
EP  - 218
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/
LA  - ru
ID  - TRSPY_2017_299_a12
ER  - 
%0 Journal Article
%A Jan Moser
%T Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
%J Informatics and Automation
%D 2017
%P 203-218
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/
%G ru
%F TRSPY_2017_299_a12
Jan Moser. Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 203-218. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/

[1] J. Moser, “Jacob's ladders and the almost exact asymptotic representation of the Hardy–Littlewood integral”, Math. Notes, 88 (2010), 414–422 | DOI | DOI | MR | Zbl

[2] J. Moser, “Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations”, Proc. Steklov Inst. Math., 276 (2012), 208–221 | DOI | MR | Zbl

[3] Moser J., Jacob's ladders, reverse iterations and new infinite set of $L_2$-orthogonal systems generated by the Riemann $\zeta (\frac 12+it)$-function, E-print, 2014, arXiv: 1402.2098 [math.CA]

[4] Moser J., Jacob's ladders, $\zeta $-factorization and infinite set of metamorphoses of a multiform, E-print, 2015, arXiv: 1501.07705v2 [math.CA]

[5] Moser J., Jacob's ladders, Riemann's oscillators, quotient of two oscillating multiforms and set of metamorphoses of this system, E-print, 2015, arXiv: 1506.00442 [math.CA]

[6] J. Moser, “Jacob's ladders, factorization, and metamorphoses as an appendix to the Riemann functional equation for $\zeta (s)$ on the critical line”, Proc. Steklov Inst. Math., 296, suppl. 2 (2017), S92–S102 | DOI | DOI | Zbl

[7] Moser J., Jacob's ladders, $\mathcal Z_{\zeta ,Q^2}$-transformation of real elementary functions and telegraphic signals generated by the power functions, E-print, 2016, arXiv: 1602.04994 [math.CA]

[8] Siegel C.L., “Über Riemanns Nachlass zur analytischen Zahlentheorie”, Quell. Stud. Gesch. Math. Astron. Phys. Abt. B, 2 (1932), 45–80