Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 203-218

Voir la notice de l'article provenant de la source Math-Net.Ru

In our previous papers, within the theory of the Riemann zeta-function we have introduced the following notions: Jacob's ladders, oscillating systems, $\zeta $-factorization, metamorphoses, etc. In this paper we obtain a $\zeta $-analogue of an elementary trigonometric identity and other interactions between oscillating systems.
Keywords: Riemann zeta-function.
@article{TRSPY_2017_299_a12,
     author = {Jan Moser},
     title = {Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity},
     journal = {Informatics and Automation},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/}
}
TY  - JOUR
AU  - Jan Moser
TI  - Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
JO  - Informatics and Automation
PY  - 2017
SP  - 203
EP  - 218
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/
LA  - ru
ID  - TRSPY_2017_299_a12
ER  - 
%0 Journal Article
%A Jan Moser
%T Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity
%J Informatics and Automation
%D 2017
%P 203-218
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/
%G ru
%F TRSPY_2017_299_a12
Jan Moser. Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 203-218. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/