Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a12, author = {Jan Moser}, title = {Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity}, journal = {Informatics and Automation}, pages = {203--218}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/} }
TY - JOUR AU - Jan Moser TI - Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity JO - Informatics and Automation PY - 2017 SP - 203 EP - 218 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/ LA - ru ID - TRSPY_2017_299_a12 ER -
%0 Journal Article %A Jan Moser %T Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity %J Informatics and Automation %D 2017 %P 203-218 %V 299 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/ %G ru %F TRSPY_2017_299_a12
Jan Moser. Jacob's ladders, interactions between $\zeta $-oscillating systems, and a $\zeta $-analogue of an elementary trigonometric identity. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 203-218. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a12/
[1] J. Moser, “Jacob's ladders and the almost exact asymptotic representation of the Hardy–Littlewood integral”, Math. Notes, 88 (2010), 414–422 | DOI | DOI | MR | Zbl
[2] J. Moser, “Jacob's ladders, the structure of the Hardy–Littlewood integral and some new class of nonlinear integral equations”, Proc. Steklov Inst. Math., 276 (2012), 208–221 | DOI | MR | Zbl
[3] Moser J., Jacob's ladders, reverse iterations and new infinite set of $L_2$-orthogonal systems generated by the Riemann $\zeta (\frac 12+it)$-function, E-print, 2014, arXiv: 1402.2098 [math.CA]
[4] Moser J., Jacob's ladders, $\zeta $-factorization and infinite set of metamorphoses of a multiform, E-print, 2015, arXiv: 1501.07705v2 [math.CA]
[5] Moser J., Jacob's ladders, Riemann's oscillators, quotient of two oscillating multiforms and set of metamorphoses of this system, E-print, 2015, arXiv: 1506.00442 [math.CA]
[6] J. Moser, “Jacob's ladders, factorization, and metamorphoses as an appendix to the Riemann functional equation for $\zeta (s)$ on the critical line”, Proc. Steklov Inst. Math., 296, suppl. 2 (2017), S92–S102 | DOI | DOI | Zbl
[7] Moser J., Jacob's ladders, $\mathcal Z_{\zeta ,Q^2}$-transformation of real elementary functions and telegraphic signals generated by the power functions, E-print, 2016, arXiv: 1602.04994 [math.CA]
[8] Siegel C.L., “Über Riemanns Nachlass zur analytischen Zahlentheorie”, Quell. Stud. Gesch. Math. Astron. Phys. Abt. B, 2 (1932), 45–80