Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a11, author = {Yu. V. Matiyasevich}, title = {A few factors from the {Euler} product are sufficient for calculating the zeta function with high precision}, journal = {Informatics and Automation}, pages = {192--202}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a11/} }
TY - JOUR AU - Yu. V. Matiyasevich TI - A few factors from the Euler product are sufficient for calculating the zeta function with high precision JO - Informatics and Automation PY - 2017 SP - 192 EP - 202 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a11/ LA - ru ID - TRSPY_2017_299_a11 ER -
%0 Journal Article %A Yu. V. Matiyasevich %T A few factors from the Euler product are sufficient for calculating the zeta function with high precision %J Informatics and Automation %D 2017 %P 192-202 %V 299 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a11/ %G ru %F TRSPY_2017_299_a11
Yu. V. Matiyasevich. A few factors from the Euler product are sufficient for calculating the zeta function with high precision. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 192-202. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a11/
[1] Bui H.M., Gonek S.M., Milinovich M.B., “A hybrid Euler–Hadamard product and moments of $\zeta '(\rho )$”, Forum math., 27:3 (2015), 1799–1828 | DOI | MR | Zbl
[2] Gonek S.M., “Finite Euler products and the Riemann hypothesis”, Trans. Amer. Math. Soc., 364:4 (2012), 2157–2191 | DOI | MR | Zbl
[3] Gonek S.M., Hughes C.P., Keating J.P., “A hybrid Euler–Hadamard product for the Riemann zeta function”, Duke Math. J., 136:3 (2007), 507–549 | MR | Zbl
[4] Gonek S.M., Keating J.P., “Mean values of finite Euler products”, J. London Math. Soc. Ser. 2, 82:3 (2010), 763–786 | DOI | MR | Zbl
[5] Grosswald E., Schnitzer F.J., “A class of modified $\zeta $ and $L$-functions”, Pac. J. Math., 74:2 (1978), 357–364 | DOI | MR
[6] Yu. V. Matiyasevich, “Riemann's zeta function and finite Dirichlet series”, St. Petersburg Math. J., 27 (2016), 985–1002 | DOI | MR | Zbl
[7] Yu. V. Matiyasevich, A few factors from the Euler product are sufficient for calculating the zeta function with high precision, POMI Preprint No 08/2016, St. Petersburg Dep. Steklov Math. Inst., St. Petersburg, 2016
[8] Matiyasevich Yu., Finite Euler products, http://logic.pdmi.ras.ru/ỹumat/personaljournal/eulereverywhere
[9] Pérez Marco R., Statistics on Riemann zeros, E-print, 2011, arXiv: 1112.0346 [math.NT]
[10] Tao T., “A remark on partial sums involving the Möbius function”, Bull. Aust. Math. Soc., 81:2 (2010), 343–349 | DOI | MR | Zbl
[11] S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function”, Math. USSR, Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl