Haas--Molnar continued fractions and metric Diophantine approximation
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 170-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

Haas–Molnar maps are a family of maps of the unit interval introduced by A. Haas and D. Molnar. They include the regular continued fraction map and A. Renyi's backward continued fraction map as important special cases. As shown by Haas and Molnar, it is possible to extend the theory of metric diophantine approximation, already well developed for the Gauss continued fraction map, to the class of Haas–Molnar maps. In particular, for a real number $x$, if $(p_n/q_n)_{n\geq 1}$ denotes its sequence of regular continued fraction convergents, set $\theta _n(x)=q_n^2|x- p_n/q_n|$, $n=1,2\dots $. The metric behaviour of the Cesàro averages of the sequence $(\theta _n(x))_{n\geq 1}$ has been studied by a number of authors. Haas and Molnar have extended this study to the analogues of the sequence $(\theta _n(x))_{n\geq 1}$ for the Haas–Molnar family of continued fraction expansions. In this paper we extend the study of $(\theta _{k_n}(x))_{n\geq 1}$ for certain sequences $(k_n)_{n\geq 1}$, initiated by the second named author, to Haas–Molnar maps.
Keywords: Haas–Molnar continued fractions, subsequence ergodic theory.
@article{TRSPY_2017_299_a10,
     author = {Liangang Ma and Radhakrishnan Nair},
     title = {Haas--Molnar continued fractions and metric {Diophantine} approximation},
     journal = {Informatics and Automation},
     pages = {170--191},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/}
}
TY  - JOUR
AU  - Liangang Ma
AU  - Radhakrishnan Nair
TI  - Haas--Molnar continued fractions and metric Diophantine approximation
JO  - Informatics and Automation
PY  - 2017
SP  - 170
EP  - 191
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/
LA  - ru
ID  - TRSPY_2017_299_a10
ER  - 
%0 Journal Article
%A Liangang Ma
%A Radhakrishnan Nair
%T Haas--Molnar continued fractions and metric Diophantine approximation
%J Informatics and Automation
%D 2017
%P 170-191
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/
%G ru
%F TRSPY_2017_299_a10
Liangang Ma; Radhakrishnan Nair. Haas--Molnar continued fractions and metric Diophantine approximation. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 170-191. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/

[1] Alkauskas G., Transfer operator for the Gauss' continued fraction map. I: Structure of the eigenvalues and trace formulas, E-print, 2014, arXiv: 1210.4083v6 [math.NT]

[2] K. I. Babenko, “On a problem of Gauss”, Sov. Math., Dokl., 19 (1978), 136–140 | MR | Zbl

[3] K. I. Babenko and S. P. Jur'ev, “On the discretization of a problem of Gauss”, Sov. Math., Dokl., 19 (1978), 731–735 | MR | MR | Zbl

[4] Bellow A., Jones R., Rosenblatt J., “Convergence for moving averages”, Ergodic Theory Dyn. Syst., 10:1 (1990), 43–62 | DOI | MR | Zbl

[5] Boshernitzan M., Kolesnik G., Quas A., Wierdl M., “Ergodic averaging sequences”, J. anal. math., 95 (2005), 63–103 | DOI | MR | Zbl

[6] Bosma W., Jager H., Wiedijk F., “Some metrical observations on the approximation by continued fractions”, Indag. math., 45 (1983), 281–299 | DOI | MR | Zbl

[7] Bourgain J., “On the maximal ergodic theorem for certain subsets of the integers”, Isr. J. Math., 61:1 (1988), 39–72 | DOI | MR | Zbl

[8] Bourgain J., “Pointwise ergodic theorems for arithmetic sets. With an appendix on return-time sequences jointly with H. Furstenberg, Y. Katznelson, D.S. Ornstein”, Publ. math. Inst. hautes étud. sci., 69 (1989), 5–45 | DOI | MR | Zbl

[9] Burton R.M., Kraaikamp C., Schmidt T.A., “Natural extensions for the Rosen fractions”, Trans. Amer. Math. Soc., 352:3 (2000), 1277–1298 | DOI | MR | Zbl

[10] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic Theory, Grundl. Math. Wiss., 245, Springer, New York, 1982 | MR | MR | Zbl

[11] Dajani K., Kraaikamp C., van der Wekken N., “Ergodicity of $N$-continued fraction expansions”, J. Number Theory, 133:9 (2013), 3183–3204 | DOI | MR | Zbl

[12] Gröchenig K., Haas A., “Backward continued fractions, Hecke groups and invariant measures for transformations of the interval”, Ergodic Theory Dyn. Syst., 16:6 (1996), 1241–1274 | DOI | MR | Zbl

[13] Haas A., “Invariant measures and natural extensions”, Can. Math. Bull., 45:1 (2002), 97–108 | DOI | MR | Zbl

[14] Haas A., Molnar D., “Metrical diophantine approximation for continued fraction like maps of the interval”, Trans. Amer. Math. Soc., 356:7 (2004), 2851–2870 | DOI | MR | Zbl

[15] Haas A., Molnar D., “The distribution of Jager pairs for continued fraction like mappings of the interval”, Pac. J. Math., 217:1 (2004), 101–114 | DOI | MR | Zbl

[16] Hensley D., “Continued fraction Cantor sets, Hausdorff dimension, and functional analysis”, J. Number Theory, 40:3 (1992), 336–358 | DOI | MR | Zbl

[17] Hensley D., “Metric Diophantine approximation and probability”, New York J. Math., 4 (1998), 249–257 | MR | Zbl

[18] Ionescu Tulcea C.T., Marinescu G., “Théorie ergodique pour des classes d'opérations non complètement continues”, Ann. Math. Ser. 2, 52:1 (1950), 140–147 | DOI | MR | Zbl

[19] Lang S., Introduction to Diophantine approximations, Addison-Wesley, Reading, MA, 1966 | MR | Zbl

[20] Mayer D.H., The Ruelle–Araki transfer operator in classical statistical mechanics, Lect. Notes Phys., 123, Springer, Berlin, 1980 | MR | Zbl

[21] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued-fraction map. I: The Hilbert space approach (Koopmanism)”, J. Stat. Phys., 47:1–2 (1987), 149–171 | DOI | MR | Zbl

[22] Mayer D., Roepstorff G., “On the relaxation time of Gauss' continued-fraction map. II: The Banach space approach (transfer operator method)”, J. Stat. Phys., 50:1–2 (1988), 331–344 | DOI | MR | Zbl

[23] Nair R., “On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems. II”, Stud. math., 105:3 (1993), 207–233 | DOI | MR | Zbl

[24] Nair R., “On the metrical theory of continued fractions”, Proc. Amer. Math. Soc., 120:4 (1994), 1041–1046 | DOI | MR | Zbl

[25] Nair R., “On uniformly distributed sequences of integers and Poincaré recurrence. II”, Indag. math. New Ser., 9:3 (1998), 405–415 | DOI | MR | Zbl

[26] Nair R., “On metric Diophantine approximation and subsequence ergodic theory”, New York J. Math., 3A (1998), 117–124 | MR | Zbl

[27] Nair R., Weber M., “On random perturbation of some intersective sets”, Indag. math. New Ser., 15:3 (2004), 373–381 | DOI | MR | Zbl

[28] Nakada H., “Metrical theory for a class of continued fraction transformations and their natural extensions”, Tokyo J. Math., 4 (1981), 399–426 | DOI | MR | Zbl

[29] Rudolfer S.M., Wilkinson K.M., “A number-theoretic class of weak Bernoulli transformations”, Math. Syst. Theory, 7 (1973), 14–24 | DOI | MR | Zbl

[30] Ruelle D., “Dynamical zeta functions and transfer operators”, Notices Amer. Math. Soc., 49:8 (2002), 887–895 | MR | Zbl

[31] Ruelle D., Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics, 2nd ed., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[32] Tempelman A., Ergodic theorems for group actions: Informational and thermodynamical aspects, Math. Appl., 78, Kluwer, Dordrecht, 1992 | MR | Zbl

[33] Vepštas L., The Gauss–Kuzmin–Wirsing operator, , 2004 http://67.198.37.16/math/gkw.pdf

[34] Walters P., An introduction to ergodic theory, Springer, New York, 1981 | MR