Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_299_a10, author = {Liangang Ma and Radhakrishnan Nair}, title = {Haas--Molnar continued fractions and metric {Diophantine} approximation}, journal = {Informatics and Automation}, pages = {170--191}, publisher = {mathdoc}, volume = {299}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/} }
TY - JOUR AU - Liangang Ma AU - Radhakrishnan Nair TI - Haas--Molnar continued fractions and metric Diophantine approximation JO - Informatics and Automation PY - 2017 SP - 170 EP - 191 VL - 299 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/ LA - ru ID - TRSPY_2017_299_a10 ER -
Liangang Ma; Radhakrishnan Nair. Haas--Molnar continued fractions and metric Diophantine approximation. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 170-191. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/
[1] Alkauskas G., Transfer operator for the Gauss' continued fraction map. I: Structure of the eigenvalues and trace formulas, E-print, 2014, arXiv: 1210.4083v6 [math.NT]
[2] K. I. Babenko, “On a problem of Gauss”, Sov. Math., Dokl., 19 (1978), 136–140 | MR | Zbl
[3] K. I. Babenko and S. P. Jur'ev, “On the discretization of a problem of Gauss”, Sov. Math., Dokl., 19 (1978), 731–735 | MR | MR | Zbl
[4] Bellow A., Jones R., Rosenblatt J., “Convergence for moving averages”, Ergodic Theory Dyn. Syst., 10:1 (1990), 43–62 | DOI | MR | Zbl
[5] Boshernitzan M., Kolesnik G., Quas A., Wierdl M., “Ergodic averaging sequences”, J. anal. math., 95 (2005), 63–103 | DOI | MR | Zbl
[6] Bosma W., Jager H., Wiedijk F., “Some metrical observations on the approximation by continued fractions”, Indag. math., 45 (1983), 281–299 | DOI | MR | Zbl
[7] Bourgain J., “On the maximal ergodic theorem for certain subsets of the integers”, Isr. J. Math., 61:1 (1988), 39–72 | DOI | MR | Zbl
[8] Bourgain J., “Pointwise ergodic theorems for arithmetic sets. With an appendix on return-time sequences jointly with H. Furstenberg, Y. Katznelson, D.S. Ornstein”, Publ. math. Inst. hautes étud. sci., 69 (1989), 5–45 | DOI | MR | Zbl
[9] Burton R.M., Kraaikamp C., Schmidt T.A., “Natural extensions for the Rosen fractions”, Trans. Amer. Math. Soc., 352:3 (2000), 1277–1298 | DOI | MR | Zbl
[10] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic Theory, Grundl. Math. Wiss., 245, Springer, New York, 1982 | MR | MR | Zbl
[11] Dajani K., Kraaikamp C., van der Wekken N., “Ergodicity of $N$-continued fraction expansions”, J. Number Theory, 133:9 (2013), 3183–3204 | DOI | MR | Zbl
[12] Gröchenig K., Haas A., “Backward continued fractions, Hecke groups and invariant measures for transformations of the interval”, Ergodic Theory Dyn. Syst., 16:6 (1996), 1241–1274 | DOI | MR | Zbl
[13] Haas A., “Invariant measures and natural extensions”, Can. Math. Bull., 45:1 (2002), 97–108 | DOI | MR | Zbl
[14] Haas A., Molnar D., “Metrical diophantine approximation for continued fraction like maps of the interval”, Trans. Amer. Math. Soc., 356:7 (2004), 2851–2870 | DOI | MR | Zbl
[15] Haas A., Molnar D., “The distribution of Jager pairs for continued fraction like mappings of the interval”, Pac. J. Math., 217:1 (2004), 101–114 | DOI | MR | Zbl
[16] Hensley D., “Continued fraction Cantor sets, Hausdorff dimension, and functional analysis”, J. Number Theory, 40:3 (1992), 336–358 | DOI | MR | Zbl
[17] Hensley D., “Metric Diophantine approximation and probability”, New York J. Math., 4 (1998), 249–257 | MR | Zbl
[18] Ionescu Tulcea C.T., Marinescu G., “Théorie ergodique pour des classes d'opérations non complètement continues”, Ann. Math. Ser. 2, 52:1 (1950), 140–147 | DOI | MR | Zbl
[19] Lang S., Introduction to Diophantine approximations, Addison-Wesley, Reading, MA, 1966 | MR | Zbl
[20] Mayer D.H., The Ruelle–Araki transfer operator in classical statistical mechanics, Lect. Notes Phys., 123, Springer, Berlin, 1980 | MR | Zbl
[21] Mayer D., Roepstorff G., “On the relaxation time of Gauss's continued-fraction map. I: The Hilbert space approach (Koopmanism)”, J. Stat. Phys., 47:1–2 (1987), 149–171 | DOI | MR | Zbl
[22] Mayer D., Roepstorff G., “On the relaxation time of Gauss' continued-fraction map. II: The Banach space approach (transfer operator method)”, J. Stat. Phys., 50:1–2 (1988), 331–344 | DOI | MR | Zbl
[23] Nair R., “On polynomials in primes and J. Bourgain's circle method approach to ergodic theorems. II”, Stud. math., 105:3 (1993), 207–233 | DOI | MR | Zbl
[24] Nair R., “On the metrical theory of continued fractions”, Proc. Amer. Math. Soc., 120:4 (1994), 1041–1046 | DOI | MR | Zbl
[25] Nair R., “On uniformly distributed sequences of integers and Poincaré recurrence. II”, Indag. math. New Ser., 9:3 (1998), 405–415 | DOI | MR | Zbl
[26] Nair R., “On metric Diophantine approximation and subsequence ergodic theory”, New York J. Math., 3A (1998), 117–124 | MR | Zbl
[27] Nair R., Weber M., “On random perturbation of some intersective sets”, Indag. math. New Ser., 15:3 (2004), 373–381 | DOI | MR | Zbl
[28] Nakada H., “Metrical theory for a class of continued fraction transformations and their natural extensions”, Tokyo J. Math., 4 (1981), 399–426 | DOI | MR | Zbl
[29] Rudolfer S.M., Wilkinson K.M., “A number-theoretic class of weak Bernoulli transformations”, Math. Syst. Theory, 7 (1973), 14–24 | DOI | MR | Zbl
[30] Ruelle D., “Dynamical zeta functions and transfer operators”, Notices Amer. Math. Soc., 49:8 (2002), 887–895 | MR | Zbl
[31] Ruelle D., Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics, 2nd ed., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[32] Tempelman A., Ergodic theorems for group actions: Informational and thermodynamical aspects, Math. Appl., 78, Kluwer, Dordrecht, 1992 | MR | Zbl
[33] Vepštas L., The Gauss–Kuzmin–Wirsing operator, , 2004 http://67.198.37.16/math/gkw.pdf
[34] Walters P., An introduction to ergodic theory, Springer, New York, 1981 | MR