Haas--Molnar continued fractions and metric Diophantine approximation
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 170-191

Voir la notice de l'article provenant de la source Math-Net.Ru

Haas–Molnar maps are a family of maps of the unit interval introduced by A. Haas and D. Molnar. They include the regular continued fraction map and A. Renyi's backward continued fraction map as important special cases. As shown by Haas and Molnar, it is possible to extend the theory of metric diophantine approximation, already well developed for the Gauss continued fraction map, to the class of Haas–Molnar maps. In particular, for a real number $x$, if $(p_n/q_n)_{n\geq 1}$ denotes its sequence of regular continued fraction convergents, set $\theta _n(x)=q_n^2|x- p_n/q_n|$, $n=1,2\dots $. The metric behaviour of the Cesàro averages of the sequence $(\theta _n(x))_{n\geq 1}$ has been studied by a number of authors. Haas and Molnar have extended this study to the analogues of the sequence $(\theta _n(x))_{n\geq 1}$ for the Haas–Molnar family of continued fraction expansions. In this paper we extend the study of $(\theta _{k_n}(x))_{n\geq 1}$ for certain sequences $(k_n)_{n\geq 1}$, initiated by the second named author, to Haas–Molnar maps.
Keywords: Haas–Molnar continued fractions, subsequence ergodic theory.
@article{TRSPY_2017_299_a10,
     author = {Liangang Ma and Radhakrishnan Nair},
     title = {Haas--Molnar continued fractions and metric {Diophantine} approximation},
     journal = {Informatics and Automation},
     pages = {170--191},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/}
}
TY  - JOUR
AU  - Liangang Ma
AU  - Radhakrishnan Nair
TI  - Haas--Molnar continued fractions and metric Diophantine approximation
JO  - Informatics and Automation
PY  - 2017
SP  - 170
EP  - 191
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/
LA  - ru
ID  - TRSPY_2017_299_a10
ER  - 
%0 Journal Article
%A Liangang Ma
%A Radhakrishnan Nair
%T Haas--Molnar continued fractions and metric Diophantine approximation
%J Informatics and Automation
%D 2017
%P 170-191
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/
%G ru
%F TRSPY_2017_299_a10
Liangang Ma; Radhakrishnan Nair. Haas--Molnar continued fractions and metric Diophantine approximation. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 170-191. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a10/