On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 7-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

An overview is given of the scientific results obtained by Anatolii Alekseevich Karatsuba between the early 1990s and 2008.
Keywords: prime number theorem, Riemann zeta function, divisor problem, exponential sums, Karatsuba's phenomenon, modular hyperbolas, Dirichlet characters, Kloosterman sums.
Mots-clés : fractional moments
@article{TRSPY_2017_299_a0,
     author = {M. A. Korolev},
     title = {On {Anatolii} {Alekseevich} {Karatsuba's} works written in the 1990s and 2000s},
     journal = {Informatics and Automation},
     pages = {7--49},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a0/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s
JO  - Informatics and Automation
PY  - 2017
SP  - 7
EP  - 49
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a0/
LA  - ru
ID  - TRSPY_2017_299_a0
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s
%J Informatics and Automation
%D 2017
%P 7-49
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a0/
%G ru
%F TRSPY_2017_299_a0
M. A. Korolev. On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 7-49. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a0/

[1] Arguin L.-P., Belius D., Bourgade P., RadziwiłłM., Soundararajan K., Maximum of the Riemann zeta function on a short interval of the critical line, E-print, 2016, arXiv: 1612.08575 [math.PR]

[2] G. I. Arkhipov, V. I. Blagodatskikh, V. S. Vladimirov, S. M. Voronin, O. B. Lupanov, E. F. Mishchenko, Yu. V. Prokhorov, V. N. Chubarikov, and A. B. Shidlovskii, “Anatolii Alekseevich Karatsuba (on his 60th birthday)”, Russ. Math. Surv., 53 (1998), 419–422 | DOI | DOI | MR | Zbl

[3] G. I. Arkhipov and V. N. Chubarikov, “On Professor A. A. Karatsuba's works in mathematics”, Proc. Steklov Inst. Math., 218 (1997), 1–14 | MR | Zbl

[4] G. I. Arkhipov, V. N. Chubarikov, “Anatoly Alekseevich Karatsuba”, Chebyshev. Sb., 16:1 (2015), 32–51 | MR

[5] Balasubramanian R., “On the frequency of Titchmarsh's phenomenon for $\zeta (s)$. IV”, Hardy–Ramanujan J., 9 (1986), 1–10 | MR | Zbl

[6] S. V. Bochkarev, “On one method of estimation of the $L_1$-norm of an exponential sum”, Proc. Steklov Inst. Math., 218 (1997), 69–71 | MR | Zbl

[7] J. Bourgain, M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78 (2014), 656–707 | DOI | DOI | MR | Zbl

[8] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, “On congruences with products of variables from short intervals and applications”, Proc. Steklov Inst. Math., 280 (2013), 61–90 | DOI | MR | Zbl

[9] R. N. Boyarinov, “On the rate of convergence to the limit exponential distribution”, Chebyshev. Sb., 6:2 (2005), 94–99 | MR | Zbl

[10] R. N. Boyarinov, “On the rate of convergence of distributions of random variables”, Dokl. Math., 82:3 (2010), 896–898 | DOI | MR | Zbl

[11] R. N. Boyarinov, “On fractional moments of random variables”, Dokl. Math., 83:1 (2011), 53–55 | DOI | MR | Zbl

[12] R. N. Boyarinov, “On the value distribution of the Riemann zeta-function”, Dokl. Math., 83:3 (2011), 290–292 | DOI | MR | Zbl

[13] R. N. Boyarinov, “Probabilistic methods in the theory of the Riemann zeta-function”, Theory Probab. Appl., 56 (2012), 181–192 | DOI | DOI | MR | Zbl

[14] R. N. Boyarinov, “Rate of convergence to limit distribution”, Moscow Univ. Math. Bull., 66:2 (2011), 70–76 | DOI | MR | Zbl

[15] R. N. Boyarinov, Probabilistic methods in number theory and applications to the theory of the argument of the Riemann zeta-function, Doctoral (Phys.–Math.) Dissertation, Moscow State Univ., M., 2012

[16] R. N. Boyarinov, V. N. Chubarikov, and I. S. Ngongo, “Asymptotic formulas for fractional moments of special sums”, Chebyshev. Sb., 4:4 (2003), 173–183 | MR | Zbl

[17] Chang M.-C., “On a question of Davenport and Lewis and new character sum bounds in finite fields”, Duke Math. J., 145:3 (2008), 409–442 | DOI | MR | Zbl

[18] Chang M.-C., “Partial quotients and equidistribution”, C. r. Math. Acad. sci. Paris, 349:13–14 (2011), 713–718 | DOI | MR | Zbl

[19] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67 (2003), 837–848 | DOI | DOI | MR | Zbl

[20] M. E. Changa, “On zeros of real trigonometric sums”, Math. Notes, 76 (2004), 738–742 | DOI | DOI | MR | Zbl

[21] M. E. Changa, “Lower bounds for the Riemann zeta function on the critical line”, Math. Notes, 76 (2004), 859–864 | DOI | DOI | MR | Zbl

[22] M. E. Changa, “On a function-theoretic inequality”, Russ. Math. Surv., 60 (2005), 564–565 | DOI | DOI | MR

[23] M. E. Changa, “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors”, Math. Notes, 97 (2015), 941–945 | DOI | DOI | MR | Zbl

[24] M. E. Changa, “A problem involving integers all of whose prime divisors belong to given arithmetic progressions”, Russ. Math. Surv., 71 (2016), 790–792 | DOI | DOI | MR | Zbl

[25] M. E. Changa, “On the integers whose number of prime factors belongs to given class of residues”, Conference to the Memory of Anatoly Alekseevich Karatsuba on Number Theory and Applications, Abstracts (Moscow, Jan. 28–30, 2016), M., 2016, 43

[26] Erdős P., Graham R.L., Old and new problems and results in combinatorial number theory, Monogr. Enseign. math., 28, Enseign. math., Univ. Genève, Genève, 1980 | MR | Zbl

[27] Feng S.-J., “On Karatsuba conjecture and the Lindelöf hypothesis”, Acta arith., 114:3 (2004), 295–300 | DOI | MR | Zbl

[28] Friedlander J., Iwaniec H., “The Brun–Titchmarsh theorem”, Analytic number theory, Proc. 39th Taniguchi Int. Symp. Math. (Kyoto, 1996), LMS Lect. Note Ser., 247, ed. Y. Motohashi, Cambridge Univ. Press, Cambridge, 1997, 85–93 | MR | Zbl

[29] Friedlander J., Iwaniec H., “The polynomial $X^2+Y^4$ captures its primes”, Ann. Math. Ser. 2, 148:3 (1998), 945–1040 | DOI | MR | Zbl

[30] J. B. Friedlander and H. Iwaniec, “Reducing character sums to Kloosterman sums”, Math. Notes, 88 (2010), 440–443 | DOI | DOI | MR | Zbl

[31] P. X. Gallagher and H. L. Montgomery, “A note on Burgess's estimate”, Math. Notes, 88 (2010), 321–329 | DOI | DOI | MR | Zbl

[32] Garaev M.Z., “Concerning the Karatsuba conjectures”, Taiwanese J. Math., 6:4 (2002), 573–580 | DOI | MR | Zbl

[33] Garaev M.Z., “Character sums in short intervals and the multiplication table modulo a large prime”, Monatsh. Math., 148:2 (2006), 127–138 | DOI | MR | Zbl

[34] Garaev M.Z., Kueh K.-L., “Distribution of special sequences modulo a large prime”, Int. J. Math. Math. Sci., 2003:50 (2003), 3189–3194 | DOI | MR | Zbl

[35] Garaev M.Z., Karatsuba A.A., “On character sums and the exceptional set of a congruence problem”, J. Number Theory, 114:1 (2005), 182–192 | DOI | MR | Zbl

[36] Garaev M.Z., Karatsuba A.A., “New estimates of double trigonometric sums with exponential functions”, Arch. Math., 87:1 (2006), 33–40 | DOI | MR | Zbl

[37] Garaev M.Z., Karatsuba A.A., “The representation of residue classes by products of small integers”, Proc. Edinb. Math. Soc. Ser. 2, 50:2 (2007), 363–375 | DOI | MR | Zbl

[38] Ghosh A., “On Riemann's zeta-function—sign changes of $S(T)$”, Recent progress in analytic number theory, Durham Symp. (1979), v. 1, Acad. Press, London, 1981, 25–46 | MR

[39] Ghosh A., “On the Riemann zeta-function—mean value theorems and the distribution of $|S(T)|$”, J. Number Theory, 17:1 (1983), 93–102 | DOI | MR | Zbl

[40] A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem”, Math. Notes, 79 (2006), 356–365 | DOI | DOI | MR | Zbl

[41] S. A. Gritsenko, “On an additive problem and its application to the problem of distribution of zeros of linear combinations of Hecke $L$-functions on the critical line”, Proc. Steklov Inst. Math., 276 (2012), 90–102 | DOI | MR | Zbl

[42] S. A. Gritsenko, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Math. Notes, 101 (2017), 166–170 | DOI | DOI | MR | MR | Zbl

[43] S. A. Gritsenko, “On the zeros of the Davenport–Heilbronn function”, Proc. Steklov Inst. Math., 296 (2017), 65–87 | DOI | MR | Zbl

[44] S. A. Gritsenko and D. B. Demidov, “On zeros of linear combinations of functions of special form related to the Hecke $L$-functions of imaginary quadratic fields on short intervals”, Proc. Steklov Inst. Math., 282, Suppl. 1 (2013), S150–S164 | DOI | DOI | MR | Zbl

[45] S. A. Gritsenko, E. A. Karatsuba, M. A. Korolev, I. S. Rezvyakova, D. I. Tolev, and M. E. Changa, “Scientific achievements of Anatolii Alekseevich Karatsuba”, Proc. Steklov Inst. Math., 280, Suppl. 2 (2013), S1–S22 | DOI | MR | Zbl

[46] Hardy G.H., Littlewood J.E., “The zeros of Riemann's zeta-function on the critical line”, Math. Z., 10 (1921), 283–317 | DOI | MR | Zbl

[47] Hooley C., “On the greatest prime factor of a cubic polynomial”, J. reine angew. Math., 303/304 (1978), 21–50 | MR | Zbl

[48] A. E. Ingham, The Distribution of Prime Numbers, Univ. Press, Cambridge, 1932 | MR

[49] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS Colloq. Publ., 53, Am. Math. Soc., Providence, RI, 2004 | MR | Zbl

[50] Jurkat W.B., van Horne J.W., “The proof of the central limit theorem for theta sums”, Duke Math. J., 48:4 (1981), 873–885 | DOI | MR | Zbl

[51] A. B. Kalmynin, “On the first moment of the Gauss sum”, Math. Notes, 99 (2016), 470–476 | DOI | DOI | MR | Zbl

[52] A. A. Karatsuba, “Estimates of trigonometric sums of a special form and their applications”, Sov. Math., Dokl., 2 (1961), 304–305 | MR | Zbl

[53] A. A. Karatsuba, “Sums of characters over prime numbers”, Math. USSR, Izv., 4:2 (1970), 303–326 | DOI | MR

[54] A. A. Karatsuba, “Distribution of power residues and nonresidues in additive sequences”, Sov. Math., Dokl., 12 (1971), 235–236 | MR | Zbl

[55] A. A. Karatsuba, “On a certain arithmetic sum”, Sov. Math., Dokl., 12 (1971), 1172–1174 | MR | Zbl

[56] A. A. Karatsuba, “Uniform approximation of the remainder term in the Dirichlet divisor problem”, Math. USSR, Izv., 6:3 (1972), 467–475 | DOI | MR | Zbl

[57] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993 | MR | MR | Zbl

[58] A. A. Karatsuba, “Sums of Legendre symbols of polynomials of second degree over prime numbers”, Math. USSR, Izv., 12:2 (1978), 299–308 | DOI | MR | Zbl | Zbl

[59] A. A. Karatsuba, “On the zeros of the function $\zeta (s)$ on short intervals of the critical line”, Math. USSR, Izv., 24:3 (1985), 523–537 | DOI | MR | MR | Zbl | Zbl

[60] A. A. Karatsuba, “The distribution of zeros of the function $\zeta (1/2+it)$”, Math. USSR, Izv., 25:3 (1985), 519–529 | DOI | MR | MR | Zbl | Zbl

[61] A. A. Karatsuba, “The distribution of pairs of quadratic residues and nonresidues of a special form”, Math. USSR, Izv., 31:2 (1988), 307–323 | DOI | MR | Zbl | Zbl

[62] Karatsuba A.A., “Approximation of exponential sums by shorter ones”, Proc. Indian Acad. Sci. Math. Sci., 97:1–3 (1987), 167–178 | DOI | MR | Zbl

[63] A. A. Karatsuba, “Zeros of certain Dirichlet series”, Russ. Math. Surv., 45:1 (1990), 207–208 | DOI | MR | Zbl

[64] A. A. Karatsuba, “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Math. USSR, Izv., 36:2 (1991), 311–324 | DOI | MR | Zbl | Zbl

[65] A. A. Karatsuba, “Zeros of linear combinations of $Z$-functions corresponding to Dirichlet series”, Sov. Math., Dokl., 43:2 (1991), 589–590 | MR | Zbl

[66] A. A. Karatsuba, “The distribution of values of Dirichlet characters on additive sequences”, Sov. Math., Dokl., 44:1 (1992), 145–148 | MR | Zbl

[67] A. A. Karatsuba, “On the zeros of a special type of function connected with Dirichlet series”, Math. USSR, Izv., 38:3 (1992), 471–502 | DOI | MR

[68] A. A. Karatsuba, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Russ. Math. Surv., 47:2 (1992), 219–220 | DOI | MR | MR | Zbl

[69] Karatsuba A.A., “On zeros of the Davenport–Heilbronn function”, Proc. Amalfi Conf. on Analytic Number Theory (Maiori, Italy, 1989), eds. E. Bombieri et al., Univ. Salerno, Salerno, 1992, 271–293 | MR | Zbl

[70] A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Russ. Acad. Sci., Dokl. Math., 48:3 (1994), 452–454 | MR | MR | Zbl

[71] A. A. Karatsuba, “On the zeros of a class of functions generated by the Hurwitz function”, Russ. Math. Surv., 48:5 (1993), 175–176 | DOI | MR | Zbl

[72] A. A. Karatsuba, “On the zeros of arithmetic Dirichlet series without Euler product”, Russ. Acad. Sci., Izv. Math., 43:2 (1994), 193–203 | MR | MR | Zbl

[73] A. A. Karatsuba, “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207 (1995), 163–177 | MR | Zbl

[74] A. A. Karatsuba, “Zeros of arithmetic Dirichlet series”, Math. Slovaca, 44:5 (1994), 633–649 | MR | Zbl

[75] Karatsuba A.A., Complex analysis in number theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[76] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59 (1995), 721–740 | DOI | MR | Zbl

[77] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59 (1995), 971–981 | DOI | MR | Zbl

[78] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl

[79] A. A. Karatsuba, “On the function $S(t)$”, Izv. Math., 60 (1996), 901–931 | DOI | DOI | MR | Zbl

[80] A. A. Karatsuba, “Density theorem and the behavior of the argument of the Riemann zeta function”, Math. Notes, 60 (1996), 333–334 | DOI | DOI | MR | MR | Zbl

[81] A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[82] A. A. Karatsuba, “Additive congruences”, Izv. Math., 61 (1997), 317–329 | DOI | DOI | MR | Zbl

[83] A. A. Karatsuba, “Regular sets in residual classes”, Math. Notes, 64 (1998), 190–193 | DOI | DOI | MR | Zbl

[84] A. A. Karatsuba, “An estimate of the $L_1$-norm of an exponential sum”, Math. Notes, 64 (1996), 401–404 | DOI | DOI | MR | MR | Zbl

[85] A. A. Karatsuba, “Kloosterman double sums”, Math. Notes, 66 (1999), 565–569 | DOI | DOI | MR | Zbl

[86] Karatsuba A.A., “The multidimensional Dirichlet divisor problem and zero free regions for the Riemann zeta function”, Funct. Approximatio. Comment. Math., 28 (2000), 131–140 | MR | Zbl

[87] A. A. Karatsuba, “Weighted character sums”, Izv. Math., 64 (2000), 249–263 | DOI | DOI | MR | Zbl

[88] A. A. Karatsuba, “On the relationship between the multidimensional Dirichlet divisor problem and the boundary of zeros of $\zeta (s)$”, Math. Notes, 70 (2001), 432–435 | DOI | DOI | MR | Zbl

[89] A. A. Karatsuba, “On lower bounds for the Riemann zeta-function”, Dokl. Math., 63:1 (2001), 9–10 | MR | Zbl

[90] A. A. Karatsuba, “Lower bounds for the maximum modulus of $\zeta (s)$ in small domains of the critical strip”, Math. Notes, 70 (2001), 724–726 | DOI | DOI | MR | Zbl

[91] A. A. Karatsuba, “On fractional parts of rapidly growing functions”, Izv. Math., 65 (2001), 727–748 | DOI | DOI | MR | Zbl

[92] A. A. Karatsuba, “Fractional moments and zeros of $\zeta (s)$ on the critical line”, Math. Notes, 72 (2002), 466–472 | DOI | DOI | MR | Zbl

[93] A. A. Karatsuba, “On zeros of trigonometric sums”, Dokl. Math., 66:3 (2002), 309–310 | MR | Zbl

[94] A. A. Karatsuba, “Omega theorems for zeta sums”, Math. Notes, 73 (2003), 212–217 | DOI | DOI | MR | Zbl

[95] A. A. Karatsuba, “Zeros and local extrema of trigonometric sums”, Probl. Inf. Transm., 39 (2003), 78–91 | DOI | MR | Zbl

[96] Karatsuba A.A., “Teoria dei numeri”, Storia della scienza, 9, Inst. Encicl. Ital., Rome, 2003, 873–881

[97] A. A. Karatsuba, “On the Riemann asymptotic formula for $\pi (x)$”, Dokl. Math., 69:3 (2004), 423–424 | MR | Zbl

[98] A. A. Karatsuba, “Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line”, Izv. Math., 68 (2004), 1157–1163 | DOI | DOI | MR | Zbl

[99] A. A. Karatsuba, “On the approximation of $\pi (x)$”, Chebyshev. Sb., 5:4 (2004), 5–20 | MR | Zbl

[100] A. A. Karatsuba, “Behavior of the function $R_1(x)$ and its mean value”, Dokl. Math., 72:2 (2005), 712–715 | MR | Zbl

[101] A. A. Karatsuba, “On the number of sign changes of the function $R_1(x)$ and its mean values”, Chebyshev. Sb., 6:2 (2005), 163–183 | MR | Zbl

[102] Karatsuba A.A., “Zero multiplicity and lower bound estimates of $|\zeta (s)|$”, Funct. Approximatio. Comment. Math., 35 (2006), 195–207 | DOI | MR | Zbl

[103] A. A. Karatsuba, “Arithmetic problems in the theory of Dirichlet characters”, Russ. Math. Surv., 63 (2008), 641–690 | DOI | DOI | MR | Zbl

[104] A. A. Karatsuba, “Nonlinear sums of characters over primes”, Dokl. Math., 78:1 (2008), 508–509 | DOI | MR | Zbl

[105] A. A. Karatsuba, “A property of the set of primes as a multiplicative basis of the natural numbers”, Dokl. Math., 84:1 (2011), 467–470 | DOI | MR | Zbl

[106] A. A. Karatsuba, “A property of the set of prime numbers”, Russ. Math. Surv., 66 (2011), 209–220 | DOI | DOI | MR | Zbl

[107] A. A. Karatsuba, “Comments to my works, written by myself”, Proc. Steklov Inst. Math., 282, Suppl. 1 (2013), S1–S23 | DOI | DOI | MR | Zbl

[108] A. A. Karatsuba, “Moscow talk: The theorem on approximation of trigonometric sum by a short one (ATS)”, Chebyshev. Sb., 16:1 (2015), 6–18 | MR

[109] A. A. Karatsuba, “Vienna talk: On the number of zeros of the Riemann zeta function in short intervals of the critical line”, Chebyshev. Sb., 16:1 (2015), 19–31 | MR

[110] A. A. Karatsuba, “On local representation of zero by a form (talk in Chandigarh)”, Proc. Steklov Inst. Math., 296, Suppl. 2 (2017), S1–S5 | DOI | MR | Zbl

[111] A. A. Karatsuba, “On zeros of certain Dirichlet series (talk in Oberwolfach)”, Proc. Steklov Inst. Math., 296, Suppl. 2 (2017), S6–S10 | DOI | Zbl

[112] A. A. Karatsuba, “Cosmology and zeta (talk in Moscow)”, Proc. Steklov Inst. Math., 296, Suppl. 2 (2017), S11–S17 | DOI | Zbl

[113] Karatsuba A.A., Karatsuba E.A., “Application of ATS in a quantum-optical model”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 211–232 | MR | Zbl

[114] Karatsuba A.A., Karatsuba E.A., “A resummation formula for collapse and revival in the Jaynes–Cummings model”, J. Phys. A: Math. Theor., 42:19 (2009), 195304 | DOI | MR | Zbl

[115] Karatsuba A.A., Karatsuba E.A., “On application of the functional equation of the Jacobi theta function to approximation of atomic inversion in the Jaynes–Cummings model”, Pac. J. Appl. Math., 2:3 (2010), 223–246 | Zbl

[116] Karatsuba A.A., Karatsuba E.A., “Physical mathematics in number theory”, Funct. Anal. Other Math., 3:2 (2011), 113–125 | DOI | MR | Zbl

[117] A. A. Karatsuba and M. A. Korolev, “The argument of the Riemann zeta function”, Russ. Math. Surv., 60 (2005), 433–488 | DOI | DOI | MR | Zbl

[118] A. A. Karatsuba and M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line”, Russ. Math. Surv., 61 (2006), 389–482 | DOI | DOI | MR | Zbl

[119] A. A. Karatsuba and M. A. Korolev, “A theorem on the approximation of a trigonometric sum by a shorter one”, Izv. Math., 71 (2007), 341–370 | DOI | DOI | MR | Zbl

[120] A. A. Karatsuba and M. A. Korolev, “Approximation of an exponential sum by a shorter one”, Dokl. Math., 75:1 (2007), 36–38 | DOI | MR | Zbl

[121] A. A. Karatsuba, B. Novak, “Arithmetical problems with numbers of special type”, Math. Notes, 66 (1999), 251–253 | DOI | DOI | MR | Zbl

[122] Kloosterman H.D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta math., 49 (1926), 407–464 | DOI | MR

[123] S. V. Konyagin and M. A. Korolev, “On a symmetric Diophantine equation with reciprocals”, Proc. Steklov Inst. Math., 294 (2016), 67–77 | DOI | MR | Zbl

[124] S. V. Konyagin and M. A. Korolev, “On irreducible solutions of an equation with reciprocals”, Sb. Math., 208:12 (2017) | DOI | MR

[125] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[126] M. A. Korolev, “The argument of the Riemann zeta function on the critical line”, Proc. Steklov Inst. Math., 239 (2002), 202–224 | MR | Zbl

[127] M. A. Korolev, “The argument of the Riemann zeta-function on the critical line”, Izv. Math., 67 (2003), 225–264 | DOI | DOI | MR | Zbl

[128] M. A. Korolev, “Short Kloosterman sums with weights”, Math. Notes, 88 (2010), 374–385 | DOI | DOI | MR | MR | Zbl

[129] Korolev M.A., “On large values of the Riemann zeta-function on short segments of the critical line”, Acta arith., 166:4 (2014), 349–390 | DOI | MR | Zbl

[130] M. A. Korolev, “Moments of trigonometric polynomials and their applications in the theory of the Riemann zeta-function”, Dokl. Math., 89:3 (2014), 305–397 | DOI | MR | Zbl

[131] M. A. Korolev, “On incomplete Gaussian sums”, Proc. Steklov Inst. Math., 290 (2015), 52–62 | DOI | MR | Zbl

[132] Korolev M.A., “On the large values of the Riemann zeta-function on the critical line. II”, Moscow J. Comb. Number Theory, 5:3 (2015), 60–86 | MR

[133] M. A. Korolev, “Gram's Law in the Theory of the Riemann Zeta-Function”, Proc. Steklov Inst. Math., 292, suppl. 2 (2016), S1–S146 | DOI | DOI | MR

[134] M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums”, Chebyshev. Sb., 17:4 (2016), 79–109 | MR | Zbl

[135] M. A. Korolev, “Short Kloosterman sums to powerful modulus”, Dokl. Math., 94:2 (2016), 561–562 | DOI | MR | Zbl

[136] M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207 (2016), 1142–1158 | DOI | DOI | MR | Zbl

[137] M. A. Korolev, “On short Kloosterman sums modulo a prime”, Math. Notes, 100 (2016), 820–827 | DOI | DOI | MR | Zbl

[138] M. A. Korolev, “On a Diophantine inequality with reciprocals”, Proc. Steklov Inst. Math., 299 (2017), 132–142

[139] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, v. 2, Teubner, Leipzig, 1909 | MR

[140] Landau E., “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Gött. Nachr., 1912 (1912), 687–770 | Zbl

[141] Littlewood J.E., “Sur la distribution des nombres premiers”, C. r. Acad. sci. Paris, 158 (1914), 1869–1872 | MR | Zbl

[142] Littlewood J.E., “On the zeros of the Riemann zeta-function”, Proc. Cambridge Philos. Soc., 22 (1924), 295–318 | DOI | MR | Zbl

[143] Von Mangoldt H., “Zur Verteilung der Nullstellen der Riemannschen Funktion $\xi (t)$”, Math. Ann., 60 (1905), 1–19 | DOI | MR

[144] V. P. Maslov, “Resonance between one-particle (Bogolyubov) and two-particle series for a superfluid in a capillary”, Dokl. Math., 72:2 (2005), 802–805 | MR | Zbl

[145] M. P. Mineev, L. P. Postnikova, V. N. Chubarikov, “A. G. Postnikov's studies in number theory (on the 80th birthday)”: A. G. Postnikov, Selected Works, Fizmatlit, M., 2005, 3–17 (in Russian) | MR

[146] R. Kh. Mukhutdinov, “A Diophantine equation with exponential matrix function”, Sov. Math., Dokl., 3 (1962), 28–30 | MR | Zbl

[147] A. D. Nadezhin, “In the mountains with Tolya Karatsuba”, Chebyshev. Sb., 16:1 (2015), 265–280 | MR

[148] Najnudel J., On the extreme values of the Riemann zeta function on random intervals of the critical line, E-print, 2016, arXiv: 1611.05562 [math.NT]

[149] Nunes R.M., On two conjectures concerning squarefree numbers in arithmetic progressions, E-print, 2015, arXiv: 1512.03648 [math.NT] | MR

[150] Oskolkov K.I., “On functional properties of incomplete Gaussian sums”, Can. J. Math., 43 (1993), 182–212 | DOI | MR

[151] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957 | MR | MR | Zbl

[152] RadziwiłłM., Large deviations in Selberg's central limit theorem, E-print, 2011, arXiv: 1108.5092 [math.NT]

[153] I. S. Rezvyakova, “On zeros of Hecke $L$-functions and their linear combinations on the critical line”, Dokl. Math., 81:2 (2010), 303–308 | DOI | MR | MR | Zbl

[154] I. S. Rezvyakova, “On the zeros on the critical line of $L$-functions corresponding to automorphic cusp forms”, Math. Notes, 88 (2010), 423–439 | DOI | DOI | MR | Zbl

[155] I. S. Rezvyakova, “Zeros of linear combinations of Hecke $L$-functions on the critical line”, Izv. Math., 74 (2010), 1277–1314 | DOI | DOI | MR | Zbl

[156] I. S. Rezvyakova, “On the zeros of the Epstein zeta-function on the critical line”, Russ. Math. Surv., 70 (2015), 785–787 | DOI | DOI | MR | Zbl

[157] I. S. Rezvyakova, “Selberg's method in the problem about the zeros of linear combinations of $L$-functions on the critical line”, Dokl. Math., 92:1 (2015), 448–451 | DOI | MR | Zbl

[158] I. S. Rezvyakova, “On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg's approach”, Izv. Math., 80 (2016), 602–622 | DOI | DOI | MR | Zbl

[159] I. S. Rezvyakova, “Additive problem with the coefficients of Hecke $L$-functions”, Proc. Steklov Inst. Math., 296 (2017), 234–242 | DOI | MR | MR | Zbl

[160] Richert H.-E., “Einführung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen”, Nachr. Akad. Wiss. Göttingen. II. Math.-Phys. Kl., 1960, 17–75 | MR | Zbl

[161] B. Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monatsberichte der Berliner Akademie, 1859

[162] Selberg A., On the zeros of Riemann's zeta-function, Skr. Norske Vid.-Akad. Oslo. I. Mat.-Naturv. Kl., 10, J. Dybwad, Oslo, 1943 | MR

[163] Selberg A., “On the zeros of Riemann's zeta-function on the critical line”, Arch. Math. Naturvid., 45:9 (1942), 101–114 | MR | Zbl

[164] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl

[165] Shparlinski I.E., “On a question of Erdős and Graham”, Arch. Math., 78:6 (2002), 445–448 | DOI | MR | Zbl

[166] S. A. Stepanov and I. E. Shparlinski, “Estimate of trigonometric sums with rational and algebraic functions”, Automorphic Functions and Number Theory, v. 1, Dal'nevost. Otd. Akad. Nauk SSSR, Vladivostok, 1989, 5–18 (in Russian)

[167] I. S. Timergaliev, “Value distributions of analogues of Kloosterman's sums”, Moscow Univ. Math. Bull., 68:5 (2013), 249–252 | DOI | MR | Zbl

[168] Titchmarsh E.C., “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429 | DOI | Zbl

[169] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon, Oxford, 1951 | MR | MR | Zbl

[170] Vâjâitu M., Zaharescu A., “Differences between powers of a primitive root”, Int. J. Math. Math. Sci., 29:6 (2002), 325–331 | DOI | MR