On the Isotopy Problem for Quasiconformal Mappings
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 139-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the isotopy of a quasiconformal mapping and its special aspects in dimension greater than $2$ are considered. It is shown that an arbitrary quasiconformal mapping of a ball has an isotopy to the identity map such that the coefficient of quasiconformality (dilatation) of the mapping varies continuously and monotonically. In contrast to the planar case, in dimension higher than $2$ such an isotopy is not possible in an arbitrary domain. Examples showing specific features of the multidimensional case are given. In particular, they show that even when such an isotopy exists, it is not always possible to perform an isotopy so that the coefficient of quasiconformality approaches $1$ monotonically at each point in the source domain.
@article{TRSPY_2017_298_a9,
     author = {V. A. Zorich},
     title = {On the {Isotopy} {Problem} for {Quasiconformal} {Mappings}},
     journal = {Informatics and Automation},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - On the Isotopy Problem for Quasiconformal Mappings
JO  - Informatics and Automation
PY  - 2017
SP  - 139
EP  - 143
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/
LA  - ru
ID  - TRSPY_2017_298_a9
ER  - 
%0 Journal Article
%A V. A. Zorich
%T On the Isotopy Problem for Quasiconformal Mappings
%J Informatics and Automation
%D 2017
%P 139-143
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/
%G ru
%F TRSPY_2017_298_a9
V. A. Zorich. On the Isotopy Problem for Quasiconformal Mappings. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 139-143. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/

[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[2] Ahlfors L., Bers L., “Riemann's mapping theorem for variable metrics”, Ann. Math. Ser. 2., 72:2 (1960), 385–404 | DOI | MR | Zbl

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[4] Donaldson S. K., Sullivan D. P., “Quasiconformal 4-manifolds”, Acta math., 163:3–4 (1989), 181–252 | DOI | MR | Zbl

[5] Freedman M. H., He Z.-X., “Divergence-free fields: Energy and asymptotic crossing number”, Ann. Math. Ser. 2, 134:1 (1991), 189–229 | DOI | MR | Zbl

[6] Freedman M. H., He Z.-X., “Links of tori and the energy of incompressible flows”, Topology, 30:2 (1991), 283–287 | DOI | MR | Zbl

[7] Martin G. J., “The Teichmüller problem for mean distortion”, Ann. Acad. sci. Fenn. Math., 34 (2009), 233–247 | MR | Zbl

[8] Milnor Dzh., Golomorfnaya dinamika: Vvodnye lektsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000

[9] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR

[10] Zorich V. A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, UMN, 57:3 (2002), 3–28 | DOI | MR | Zbl

[11] Zorich V. A., “Neskolko zamechanii o mnogomernykh kvazikonformnykh otobrazheniyakh”, Mat. sb., 208:3 (2017), 72–95 | DOI | MR | Zbl