Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_298_a9, author = {V. A. Zorich}, title = {On the {Isotopy} {Problem} for {Quasiconformal} {Mappings}}, journal = {Informatics and Automation}, pages = {139--143}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/} }
V. A. Zorich. On the Isotopy Problem for Quasiconformal Mappings. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 139-143. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a9/
[1] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[2] Ahlfors L., Bers L., “Riemann's mapping theorem for variable metrics”, Ann. Math. Ser. 2., 72:2 (1960), 385–404 | DOI | MR | Zbl
[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[4] Donaldson S. K., Sullivan D. P., “Quasiconformal 4-manifolds”, Acta math., 163:3–4 (1989), 181–252 | DOI | MR | Zbl
[5] Freedman M. H., He Z.-X., “Divergence-free fields: Energy and asymptotic crossing number”, Ann. Math. Ser. 2, 134:1 (1991), 189–229 | DOI | MR | Zbl
[6] Freedman M. H., He Z.-X., “Links of tori and the energy of incompressible flows”, Topology, 30:2 (1991), 283–287 | DOI | MR | Zbl
[7] Martin G. J., “The Teichmüller problem for mean distortion”, Ann. Acad. sci. Fenn. Math., 34 (2009), 233–247 | MR | Zbl
[8] Milnor Dzh., Golomorfnaya dinamika: Vvodnye lektsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000
[9] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[10] Zorich V. A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, UMN, 57:3 (2002), 3–28 | DOI | MR | Zbl
[11] Zorich V. A., “Neskolko zamechanii o mnogomernykh kvazikonformnykh otobrazheniyakh”, Mat. sb., 208:3 (2017), 72–95 | DOI | MR | Zbl