Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 127-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a closed oriented surface $\Sigma $ we define its degenerations into singular surfaces that are locally homeomorphic to wedges of disks. Let $X_{\Sigma ,n}$ be the set of isomorphism classes of orientation-preserving $n$-fold branched coverings $\Sigma \to S^2$ of the two-dimensional sphere. We complete $X_{\Sigma ,n}$ with the isomorphism classes of mappings that cover the sphere by the degenerations of $\Sigma $. In the case $\Sigma =S^2$, the topology that we define on the obtained completion $\overline {X}_{\!\Sigma ,n}$ coincides on $X_{S^2,n}$ with the topology induced by the space of coefficients of rational functions $P/Q$, where $P$ and $Q$ are homogeneous polynomials of degree $n$ on $\mathbb C\mathrm P^1\cong S^2$. We prove that $\overline {X}_{\!\Sigma ,n}$ coincides with the Diaz–Edidin–Natanzon–Turaev compactification of the Hurwitz space $H(\Sigma ,n)\subset X_{\Sigma ,n}$ consisting of isomorphism classes of branched coverings with all critical values being simple.
@article{TRSPY_2017_298_a8,
     author = {V. I. Zvonilov and S. Yu. Orevkov},
     title = {Compactification of the {Space} of {Branched} {Coverings} of the {Two-Dimensional} {Sphere}},
     journal = {Informatics and Automation},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a8/}
}
TY  - JOUR
AU  - V. I. Zvonilov
AU  - S. Yu. Orevkov
TI  - Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
JO  - Informatics and Automation
PY  - 2017
SP  - 127
EP  - 138
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a8/
LA  - ru
ID  - TRSPY_2017_298_a8
ER  - 
%0 Journal Article
%A V. I. Zvonilov
%A S. Yu. Orevkov
%T Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere
%J Informatics and Automation
%D 2017
%P 127-138
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a8/
%G ru
%F TRSPY_2017_298_a8
V. I. Zvonilov; S. Yu. Orevkov. Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 127-138. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a8/

[1] Berstein I., Edmonds A. L., “On the classification of generic branched coverings of surfaces”, Ill. J. Math., 28:1 (1984), 64–82 | MR | Zbl

[2] Bogomolov F. A., Kulikov Vik. S., “The ambiguity index of an equipped finite group”, Eur. J. Math., 1:2 (2015), 260–278 | DOI | MR | Zbl

[3] Coolidge J. L., A treatise on algebraic plane curves, Oxford Univ. Press, Oxford, 1931 | MR | Zbl

[4] Degtyarev A., Topology of algebraic curves: An approach via dessins d'enfants, De Gruyter Stud. Math., 44, W. de Gruyter, Berlin, 2012 | MR | Zbl

[5] Diaz S. P., “On the Natanzon–Turaev compactification of the Hurwitz space”, Proc. Amer. Math. Soc., 130:3 (2002), 613–618 | DOI | MR | Zbl

[6] Diaz S., Edidin D., “Towards the homology of Hurwitz spaces”, J. Diff. Geom., 43:1 (1996), 66–98 | DOI | MR | Zbl

[7] Fried M., Biggers R., “Moduli spaces of covers and the Hurwitz monodromy group”, J. reine angew. Math., 335 (1982), 87–121 | MR | Zbl

[8] Fried M. D., Völklein H., “The inverse Galois problem and rational points on moduli spaces”, Math. Ann., 290:4 (1991), 771–800 | DOI | MR | Zbl

[9] Harris J., Mumford D., “On the Kodaira dimension of the moduli space of curves”, Invent. math., 67 (1982), 23–86 | DOI | MR | Zbl

[10] Hurwitz A., “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[11] Kulikov Vik. S., “Razlozheniya na mnozhiteli v konechnykh gruppakh”, Mat. sb., 204:2 (2013), 87–116 | DOI | MR | Zbl

[12] Kulikov Vik. S., Kharlamov V. M., “Polugruppy nakrytii”, Izv. RAN. Ser. mat., 77:3 (2013), 163–198 | DOI | MR | Zbl

[13] Lando S. K., “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3 (2002), 29–98 | DOI | MR | Zbl

[14] Zvonkin A. K., Lando S. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[15] Natanzon S. M., “Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves”, Sel. math. Sov., 12:3 (1993), 251–291 | MR

[16] Natanzon S., Turaev V., “A compactification of the Hurwitz space”, Topology, 38:4 (1999), 889–914 | DOI | MR | Zbl

[17] Orevkov S. Yu., “Riemann existence theorem and construction of real algebraic curves”, Ann. fac. sci. Toulouse. Math. Sér. 6, 12:4 (2003), 517–531 | DOI | MR | Zbl

[18] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Algebraicheskaya geometriya-4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 55, VINITI, M., 1989, 137–309