On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 112-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the complex dimension of the set of solutions of the noncommutative $U(1)$ sigma model that are finite-dimensional perturbations of the identity operator and have canonical rank $r$ and minimal uniton number $2$ is equal to $r$. We give explicit formulas for all such solutions.
@article{TRSPY_2017_298_a7,
     author = {A. V. Domrina and A. V. Domrin},
     title = {On the {Dimension} of {Solution} {Spaces} of a {Noncommutative} {Sigma} {Model} in the {Case} of {Uniton} {Number} 2},
     journal = {Informatics and Automation},
     pages = {112--126},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/}
}
TY  - JOUR
AU  - A. V. Domrina
AU  - A. V. Domrin
TI  - On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
JO  - Informatics and Automation
PY  - 2017
SP  - 112
EP  - 126
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/
LA  - ru
ID  - TRSPY_2017_298_a7
ER  - 
%0 Journal Article
%A A. V. Domrina
%A A. V. Domrin
%T On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
%J Informatics and Automation
%D 2017
%P 112-126
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/
%G ru
%F TRSPY_2017_298_a7
A. V. Domrina; A. V. Domrin. On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 112-126. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/