On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 112-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the complex dimension of the set of solutions of the noncommutative $U(1)$ sigma model that are finite-dimensional perturbations of the identity operator and have canonical rank $r$ and minimal uniton number $2$ is equal to $r$. We give explicit formulas for all such solutions.
@article{TRSPY_2017_298_a7,
     author = {A. V. Domrina and A. V. Domrin},
     title = {On the {Dimension} of {Solution} {Spaces} of a {Noncommutative} {Sigma} {Model} in the {Case} of {Uniton} {Number} 2},
     journal = {Informatics and Automation},
     pages = {112--126},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/}
}
TY  - JOUR
AU  - A. V. Domrina
AU  - A. V. Domrin
TI  - On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
JO  - Informatics and Automation
PY  - 2017
SP  - 112
EP  - 126
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/
LA  - ru
ID  - TRSPY_2017_298_a7
ER  - 
%0 Journal Article
%A A. V. Domrina
%A A. V. Domrin
%T On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2
%J Informatics and Automation
%D 2017
%P 112-126
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/
%G ru
%F TRSPY_2017_298_a7
A. V. Domrina; A. V. Domrin. On the Dimension of Solution Spaces of a Noncommutative Sigma Model in the Case of Uniton Number 2. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 112-126. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a7/

[1] Domrin A. V., “Nekommutativnye unitony”, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl

[2] Domrin A. V., “Prostranstva modulei reshenii nekommutativnoi sigma-modeli”, TMF, 156:3 (2008), 307–327 | DOI | MR | Zbl

[3] Domrin A. V., Lechtenfeld O., Petersen S., “Sigma-model solitons in the noncommutative plane: Construction and stability analysis”, J. High Energy Phys., 2005:3 (2005), 045 | DOI | MR

[4] Domrina A. V., “Petlevye podnyatiya v nekommutativnoi sigma-modeli”, Tr. MIAN, 279, 2012, 72–80 | MR | Zbl

[5] Domrina A. V., “Tselochislennye kharakteristiki reshenii nekommutativnoi sigma-modeli”, TMF, 178:3 (2014), 307–321 | DOI | MR | Zbl

[6] Ferreira M. J., Simões B. A., Wood J. C., “All harmonic 2-spheres in the unitary group, completely explicitly”, Math. Z., 266:4 (2010), 953–978 | DOI | MR | Zbl

[7] Hörmander L., The analysis of linear partial differential operators, v. 3, Pseudo-differential operators, Springer, Berlin, 1985; Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[8] Lechtenfeld O., “Noncommutative solitons”, Recent developments in gravitation and cosmology, AIP Conf. Proc., 977, eds. A. Macías et al., Amer. Inst. Phys., Melville, NY, 2008, 37–51 | DOI | MR | Zbl

[9] Lechtenfeld O., Popov A. D., “Noncommutative multi-solitons in $2+1$ dimensions”, J. High Energy Phys., 2001:11 (2001), 040 | DOI | MR

[10] Uhlenbeck K., “Harmonic maps into Lie groups (classical solutions of the chiral model)”, J. Diff. Geom., 30:1 (1989), 1–50 | DOI | MR | Zbl

[11] Zakrzewski W. J., Low dimensional sigma models, Adam Hilger, Bristol, 1989 | MR | Zbl