Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 101-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of holomorphic self-mappings of a strip which is symmetric with respect to the real axis is studied. It is required that the mappings should boundedly deviate from the identity transformation on the real axis. Distortion theorems for this class of functions are obtained, and domains of univalence are found that arise for certain values of the parameter characterizing the deviation of the mappings from the identity transformation on the real axis.
Keywords: holomorphic mapping, fixed point, angular derivative, distortion theorems.
Mots-clés : domains of univalence
@article{TRSPY_2017_298_a6,
     author = {V. V. Goryainov},
     title = {Holomorphic {Mappings} of a {Strip} into {Itself} with {Bounded} {Distortion} at {Infinity}},
     journal = {Informatics and Automation},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a6/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity
JO  - Informatics and Automation
PY  - 2017
SP  - 101
EP  - 111
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a6/
LA  - ru
ID  - TRSPY_2017_298_a6
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity
%J Informatics and Automation
%D 2017
%P 101-111
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a6/
%G ru
%F TRSPY_2017_298_a6
V. V. Goryainov. Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 101-111. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a6/

[1] Ahlfors L. V., Conformal invariants: Topics in geometric function theory, McGraw-Hill Ser. Higher Math., McGraw-Hill Book Co., New York, 1973 | MR | Zbl

[2] Dubinin V. N., Prilepkina E. G., “O variatsionnykh printsipakh konformnykh otobrazhenii”, Algebra i analiz, 18:3 (2006), 39–62

[3] Duren P. L., Univalent functions, Grundl. Math. Wiss., 259, Springer, New York, 1983 | MR | Zbl

[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[5] Goryainov V. V., “Polugruppy konformnykh otobrazhenii”, Mat. sb., 129:4 (1986), 451–472 | MR

[6] Goryainov V. V., “Golomorfnye otobrazheniya edinichnogo kruga v sebya s dvumya nepodvizhnymi tochkami”, Mat. sb., 208:3 (2017), 54–71 | DOI | MR | Zbl

[7] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi: Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973 | MR

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[9] Pommerenke Ch., “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. Ser. 2, 19 (1979), 439–447 | DOI | MR | Zbl

[10] Valiron Zh., Analiticheskie funktsii, Gostekhizdat, M., 1957