On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 75-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary properties of functions representable as limit-periodic continued fractions of the form $A_1(z)/(B_1(z)+A_2(z)/(B_2(z)+\dots ))$ are studied; here the sequence of polynomials $\{A_n\}_{n=1}^\infty $ has periodic limits with zeros lying on a finite set $E$, and the sequence of polynomials $\{B_n\}_{n=1}^\infty $ has periodic limits with zeros lying outside $E$. It is shown that the transfinite diameter of the boundary of the convergence domain of such a continued fraction in the external field associated with the fraction coincides with the upper limit of the averaged generalized Hankel determinants of the function defined by the fraction. As a consequence of this result combined with the generalized Pólya theorem, it is shown that the functions defined by the continued fractions under consideration do not have a single-valued meromorphic continuation to any neighborhood of any nonisolated point of the boundary of the convergence set.
Keywords: continued fractions, Hankel determinants, transfinite diameter, meromorphic continuation.
@article{TRSPY_2017_298_a5,
     author = {V. I. Buslaev},
     title = {On the {Van} {Vleck} {Theorem} for {Limit-Periodic} {Continued} {Fractions} of {General} {Form}},
     journal = {Informatics and Automation},
     pages = {75--100},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
JO  - Informatics and Automation
PY  - 2017
SP  - 75
EP  - 100
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/
LA  - ru
ID  - TRSPY_2017_298_a5
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form
%J Informatics and Automation
%D 2017
%P 75-100
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/
%G ru
%F TRSPY_2017_298_a5
V. I. Buslaev. On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 75-100. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/

[1] Buslaev V. I., “O skhodimosti nepreryvnykh T-drobei”, Tr. MIAN, 235, 2001, 36–51 | Zbl

[2] Buslaev V. I., “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 65:4 (2001), 35–48 | DOI | MR | Zbl

[3] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Mat. sb., 193:6 (2002), 25–38 | DOI | MR | Zbl

[4] Buslaev V. I., “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. mat. zhurn., 62:3 (2010), 315–326 | MR | Zbl

[5] Buslaev V. I., “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. math., 39:1 (2013), 1–27 | DOI | Zbl

[6] Buslaev V. I., “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Mat. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[7] Buslaev V. I., “Emkost kompakta v pole logarifmicheskogo potentsiala”, Tr. MIAN, 290, 2015, 254–271 | Zbl

[8] Buslaev V. I., “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Mat. sb., 206:12 (2015), 55–69 | DOI | Zbl

[9] Buslaev V. I., “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Tr. MIAN, 293, 2016, 133–145 | Zbl

[10] Buslaev V. I., “Emkost ratsionalnogo proobraza kompakta”, Mat. zametki, 100:6 (2016), 790–799 | DOI | Zbl

[11] Buslaev V. I., “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Mat. sb., 209 (2018) | DOI

[12] Buslaev V. I., Suetin S. P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290, 2015, 272–279 | Zbl

[13] Buslaev V. I., Suetin S. P., “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl

[14] Gonchar A. A., “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Mat. sb., 197:10 (2006), 3–14 | DOI | Zbl

[15] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134:3 (1987), 306–352 | Zbl

[16] Dzhouns U., Tron V., Nepreryvnye drobi: Analiticheskaya teoriya i ee prilozheniya, Mir, M., 1985 | MR

[17] Komlov A. V., Kruzhilin N. G., Palvelev R. V., Suetin S. P., “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (2016), 205–206 | DOI | MR | Zbl

[18] Komlov A. V., Suetin S. P., “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (2015), 211–212 | DOI | MR | Zbl

[19] Pólya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss., 1929, 55–62 | Zbl

[20] Saff E. B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl

[21] Stahl H., “Extremal domains associated with an analytic function. I, II”, Complex Variables. Theory Appl., 4:4 (1985), 311–324 ; 325–338 | DOI | MR | Zbl | Zbl

[22] Stahl H., “The structure of extremal domains associated with an analytic function”, Complex Variables. Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[23] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR | Zbl

[24] Suetin S. P., “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (2016), 183–184 | DOI | MR | Zbl

[25] Van Vleck E. B., “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR | Zbl