Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_298_a5, author = {V. I. Buslaev}, title = {On the {Van} {Vleck} {Theorem} for {Limit-Periodic} {Continued} {Fractions} of {General} {Form}}, journal = {Informatics and Automation}, pages = {75--100}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/} }
V. I. Buslaev. On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 75-100. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a5/
[1] Buslaev V. I., “O skhodimosti nepreryvnykh T-drobei”, Tr. MIAN, 235, 2001, 36–51 | Zbl
[2] Buslaev V. I., “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 65:4 (2001), 35–48 | DOI | MR | Zbl
[3] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Mat. sb., 193:6 (2002), 25–38 | DOI | MR | Zbl
[4] Buslaev V. I., “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. mat. zhurn., 62:3 (2010), 315–326 | MR | Zbl
[5] Buslaev V. I., “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. math., 39:1 (2013), 1–27 | DOI | Zbl
[6] Buslaev V. I., “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Mat. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[7] Buslaev V. I., “Emkost kompakta v pole logarifmicheskogo potentsiala”, Tr. MIAN, 290, 2015, 254–271 | Zbl
[8] Buslaev V. I., “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Mat. sb., 206:12 (2015), 55–69 | DOI | Zbl
[9] Buslaev V. I., “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Tr. MIAN, 293, 2016, 133–145 | Zbl
[10] Buslaev V. I., “Emkost ratsionalnogo proobraza kompakta”, Mat. zametki, 100:6 (2016), 790–799 | DOI | Zbl
[11] Buslaev V. I., “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Mat. sb., 209 (2018) | DOI
[12] Buslaev V. I., Suetin S. P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290, 2015, 272–279 | Zbl
[13] Buslaev V. I., Suetin S. P., “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl
[14] Gonchar A. A., “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Mat. sb., 197:10 (2006), 3–14 | DOI | Zbl
[15] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134:3 (1987), 306–352 | Zbl
[16] Dzhouns U., Tron V., Nepreryvnye drobi: Analiticheskaya teoriya i ee prilozheniya, Mir, M., 1985 | MR
[17] Komlov A. V., Kruzhilin N. G., Palvelev R. V., Suetin S. P., “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (2016), 205–206 | DOI | MR | Zbl
[18] Komlov A. V., Suetin S. P., “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (2015), 211–212 | DOI | MR | Zbl
[19] Pólya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss., 1929, 55–62 | Zbl
[20] Saff E. B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl
[21] Stahl H., “Extremal domains associated with an analytic function. I, II”, Complex Variables. Theory Appl., 4:4 (1985), 311–324 ; 325–338 | DOI | MR | Zbl | Zbl
[22] Stahl H., “The structure of extremal domains associated with an analytic function”, Complex Variables. Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[23] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR | Zbl
[24] Suetin S. P., “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (2016), 183–184 | DOI | MR | Zbl
[25] Van Vleck E. B., “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR | Zbl