Spin Geometry of Dirac and Noncommutative Geometry of Connes
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 276-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review is devoted to the interpretation of the Dirac spin geometry in terms of noncommutative geometry. In particular, we give an idea of the proof of the theorem stating that the classical Dirac geometry is a noncommutative spin geometry in the sense of Connes, as well as an idea of the proof of the converse theorem stating that any noncommutative spin geometry over the algebra of smooth functions on a smooth manifold is the Dirac spin geometry.
@article{TRSPY_2017_298_a16,
     author = {A. G. Sergeev},
     title = {Spin {Geometry} of {Dirac} and {Noncommutative} {Geometry} of {Connes}},
     journal = {Informatics and Automation},
     pages = {276--314},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a16/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Spin Geometry of Dirac and Noncommutative Geometry of Connes
JO  - Informatics and Automation
PY  - 2017
SP  - 276
EP  - 314
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a16/
LA  - ru
ID  - TRSPY_2017_298_a16
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Spin Geometry of Dirac and Noncommutative Geometry of Connes
%J Informatics and Automation
%D 2017
%P 276-314
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a16/
%G ru
%F TRSPY_2017_298_a16
A. G. Sergeev. Spin Geometry of Dirac and Noncommutative Geometry of Connes. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 276-314. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a16/

[1] Connes A., Noncommutative geometry, Acad. Press, San Diego, CA, 1994 | MR | Zbl

[2] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser, Boston, 2001 | MR | Zbl

[3] Khalkhali M., Basic noncommutative geometry, Eur. Math. Soc., Zürich, 2013 | MR | Zbl

[4] Landi G., An introduction to noncommutative spaces and their geometries, Springer, Berlin, 1997 | MR | Zbl

[5] Lawson H. B. (Jr.), Michelsohn M.-L., Spin geometry, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[6] Sergeev A. G., “Kvantovoe ischislenie i kvazikonformnye otobrazheniya”, Mat. zametki, 100:1 (2016), 144–154 | DOI | MR | Zbl

[7] Sergeev A. G., “Kvantovanie sobolevskogo prostranstva poludifferentsiruemykh funktsii”, Mat. sb., 207:10 (2016), 96–104 | DOI | Zbl

[8] Sergeev A. G., Vvedenie v nekommutativnuyu geometriyu, Preprint, , MIAN, M., 2016 http://www.mi.ras.ru/noc/14_15/ncgeom_2016.pdf

[9] Sergeev A. G., “Nekommutativnaya geometriya i analiz”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 137, VINITI, M., 2017, 61–81