New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 216-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

New uniform approximability criteria formulated in terms of logarithmic capacity are obtained for approximations by harmonic functions on compact sets in $\mathbb R^2$. A relationship between these approximations and analogous approximations on compact sets in $\mathbb R^3$ is established.
Keywords: uniform approximation by harmonic functions, Vitushkin-type localization operator, harmonic capacity, logarithmic capacity, reduction method.
@article{TRSPY_2017_298_a13,
     author = {P. V. Paramonov},
     title = {New {Criteria} for {Uniform} {Approximability} by {Harmonic} {Functions} on {Compact} {Sets} in $\mathbb R^2$},
     journal = {Informatics and Automation},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$
JO  - Informatics and Automation
PY  - 2017
SP  - 216
EP  - 226
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/
LA  - ru
ID  - TRSPY_2017_298_a13
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$
%J Informatics and Automation
%D 2017
%P 216-226
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/
%G ru
%F TRSPY_2017_298_a13
P. V. Paramonov. New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 216-226. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/

[1] Debiard A., Gaveau B., “Potentiel fin et algèbres de fonctions analytiques. I”, J. Funct. Anal., 16:3 (1974), 289–304 | DOI | MR | Zbl

[2] Deny J., “Systèmes totaux de fonctions harmoniques”, Ann. Inst. Fourier, 1 (1949), 103–113 | DOI | MR

[3] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | Zbl

[4] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[5] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\mathrm {Lip}_1$-capacity”, Pac. J. Math., 171:2 (1995), 469–491 | DOI | MR | Zbl

[6] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti garmonicheskimi funktsiyami na kompaktakh v $\mathbb R^3$”, Tr. MIAN, 279, 2012, 120–165 | Zbl

[7] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, UMN, 67:6 (2012), 53–100 | DOI | MR | Zbl

[8] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Mat. sb., 186:9 (1995), 97–112 | MR | Zbl

[9] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | DOI | MR | Zbl

[10] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[11] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Mat. sb., 192:4 (2001), 37–58 | DOI | MR | Zbl

[12] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR