Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_298_a13, author = {P. V. Paramonov}, title = {New {Criteria} for {Uniform} {Approximability} by {Harmonic} {Functions} on {Compact} {Sets} in $\mathbb R^2$}, journal = {Informatics and Automation}, pages = {216--226}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/} }
TY - JOUR AU - P. V. Paramonov TI - New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$ JO - Informatics and Automation PY - 2017 SP - 216 EP - 226 VL - 298 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/ LA - ru ID - TRSPY_2017_298_a13 ER -
P. V. Paramonov. New Criteria for Uniform Approximability by Harmonic Functions on Compact Sets in $\mathbb R^2$. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 216-226. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a13/
[1] Debiard A., Gaveau B., “Potentiel fin et algèbres de fonctions analytiques. I”, J. Funct. Anal., 16:3 (1974), 289–304 | DOI | MR | Zbl
[2] Deny J., “Systèmes totaux de fonctions harmoniques”, Ann. Inst. Fourier, 1 (1949), 103–113 | DOI | MR
[3] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | Zbl
[4] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[5] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\mathrm {Lip}_1$-capacity”, Pac. J. Math., 171:2 (1995), 469–491 | DOI | MR | Zbl
[6] Mazalov M. Ya., “Kriterii ravnomernoi priblizhaemosti garmonicheskimi funktsiyami na kompaktakh v $\mathbb R^3$”, Tr. MIAN, 279, 2012, 120–165 | Zbl
[7] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, UMN, 67:6 (2012), 53–100 | DOI | MR | Zbl
[8] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Mat. sb., 186:9 (1995), 97–112 | MR | Zbl
[9] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | DOI | MR | Zbl
[10] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl
[11] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Mat. sb., 192:4 (2001), 37–58 | DOI | MR | Zbl
[12] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR