On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 185-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vector logarithmic-potential equilibrium problems with the Angelesco interaction matrix are considered. Solutions to two-dimensional problems in the class of measures and in the class of charges are studied. It is proved that in the case of two arbitrary real intervals, a solution to the problem in the class of charges exists and is unique. The Cauchy transforms of the components of the equilibrium charge are algebraic functions whose degree can take values $2$, $3$, $4$, and $6$ depending on the arrangement of the intervals. A constructive method for finding the vector equilibrium charge in an explicit form is presented, which is based on the uniformization of an algebraic curve. An explicit form of the vector equilibrium measure is found under some constraints on the arrangement of the intervals.
Keywords: vector equilibrium problem, Angelesco interaction matrix, logarithmic potential, extremal measure, algebraic functions, uniformization of an algebraic curve.
@article{TRSPY_2017_298_a12,
     author = {V. G. Lysov and D. N. Tulyakov},
     title = {On a {Vector} {Potential-Theory} {Equilibrium} {Problem} with the {Angelesco} {Matrix}},
     journal = {Informatics and Automation},
     pages = {185--215},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a12/}
}
TY  - JOUR
AU  - V. G. Lysov
AU  - D. N. Tulyakov
TI  - On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix
JO  - Informatics and Automation
PY  - 2017
SP  - 185
EP  - 215
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a12/
LA  - ru
ID  - TRSPY_2017_298_a12
ER  - 
%0 Journal Article
%A V. G. Lysov
%A D. N. Tulyakov
%T On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix
%J Informatics and Automation
%D 2017
%P 185-215
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a12/
%G ru
%F TRSPY_2017_298_a12
V. G. Lysov; D. N. Tulyakov. On a Vector Potential-Theory Equilibrium Problem with the Angelesco Matrix. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 185-215. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a12/

[1] Angelesco A., “Sur deux extensions des fractions continues algébriques”, C. r. Acad. sci. Paris, 168 (1919), 262–265 | Zbl

[2] Aptekarev A. I., “Asimptotika polinomov sovmestnoi ortogonalnosti v sluchae Andzhelesko”, Mat. sb., 136:1 (1988), 56–84 | Zbl

[3] Aptekarev A. I., “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, DAN., 422:4 (2008), 443–445 | Zbl

[4] Aptekarev A. I., “The Mhaskar–Saff variational principle and location of the shocks of certain hyperbolic equations”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 167–186 | DOI | MR | Zbl

[5] Aptekarev A. I., Kalyagin V. A., Asimptoticheskoe povedenie kornya $n$-i stepeni mnogochlenov sovmestnoi ortogonalnosti i algebraicheskie funktsii, Preprint No60, In-t prikl. mat. im. M. V. Keldysha, M., 1986

[6] Aptekarev A. I., Kalyagin V. A., Lysov V. G., Toulyakov D. N., “Equilibrium of vector potentials and uniformization of the algebraic curves of genus 0”, J. Comput. Appl. Math., 233:3 (2009), 602–616 | DOI | MR | Zbl

[7] Aptekarev A. I., Lysov V. G., “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Mat. sb., 201:2 (2010), 29–78 | DOI | Zbl

[8] Aptekarev A. I., Lysov V. G., Tulyakov D. N., Trekhlistnye rimanovy poverkhnosti roda 0 s fiksirovannymi proektsiyami tochek vetvleniya, Preprint No13, In-t prikl. mat. im. M. V. Keldysha, M., 2007

[9] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Mat. sb., 202:2 (2011), 3–56 | DOI | Zbl

[10] Aptekarev A. I., Tulyakov D. N., “Abelev integral Nattolla na rimanovoi poverkhnosti kubicheskogo kornya mnogochlena tretei stepeni”, Izv. RAN. Ser. mat., 80:6 (2016), 5–42 | DOI | MR | Zbl

[11] Aptekarev A. I., Toulyakov D. N., Van Assche W., “Hyperelliptic uniformization of algebraic curves of the third order”, J. Comput. Appl. Math., 284 (2015), 38–49 | DOI | MR | Zbl

[12] Aptekarev A. I., Van Assche W., Yattselev M. L., “Hermite–Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports”, Commun. Pure Appl. Math., 70:3 (2017), 444–510 | DOI | MR | Zbl

[13] Beckermann B., Kalyagin V., Matos A. C., Wielonsky F., “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[14] Buslaev V. I., Suetin S. P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290, 2015, 272–279 | Zbl

[15] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, 1981, 31–48 | Zbl

[16] Gonchar A. A., Rakhmanov E. A., “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[17] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Mat. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl

[18] Kalyagin V. A., “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Mat. sb., 110:4 (1979), 609–627 | MR

[19] Komlov A. V., Kruzhilin N. G., Palvelev R. V., Suetin S. P., “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (2016), 205–206 | DOI | MR | Zbl

[20] Komlov A. V., Suetin S. P., “O raspredelenii nulei polinomov Ermita–Pade”, UMN, 70:6 (2015), 211–212 | DOI | MR | Zbl

[21] Lapik M. A., “O semeistvakh vektornykh mer, ravnovesnykh vo vneshnem pole”, Mat. sb., 206:2 (2015), 41–56 | DOI | MR | Zbl

[22] Lapik M. A., Ekstremalnyi funktsional dlya vektornykh zadach ravnovesiya logarifmicheskogo potentsiala vo vneshnem pole s matritsei vzaimodeistviya Anzhelesko, Preprint No83, In-t prikl. mat. im. M. V. Keldysha, M., 2015

[23] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Mat. sb., 113:4 (1980), 499–519 | MR | Zbl

[24] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[25] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[26] Rakhmanov E. A., “K asimptotike mnogochlenov Ermita–Pade dlya dvukh markovskikh funktsii”, Mat. sb., 202:1 (2011), 133–140 | DOI | MR | Zbl

[27] Rakhmanov E. A., “Teorema Gonchara–Shtalya o $\rho ^2$ i svyazannye s nei napravleniya issledovanii po ratsionalnym approksimatsiyam analiticheskikh funktsii”, Mat. sb., 207:9 (2016), 57–90 | DOI | MR | Zbl

[28] Sorokin V. N., “O mnogochlenakh sovmestnoi ortogonalnosti dlya diskretnykh mer Meiksnera”, Mat. sb., 201:10 (2010), 137–160 | DOI | Zbl

[29] Sorokin V. N., “O mnogochlenakh sovmestnoi ortogonalnosti dlya trekh mer Meiksnera”, Tr. MIAN, 298, 2017, 315–337

[30] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR | Zbl

[31] Yattselev M. L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1201 | DOI | MR | Zbl