On $G$-Rigid Surfaces
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 144-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rigid algebraic varieties form an important class of complex varieties that exhibit interesting geometric phenomena. In this paper we propose a natural extension of rigidity to complex projective varieties with a finite group action ($G$-varieties) and focus on the first nontrivial case, namely, on $G$-rigid surfaces that can be represented as desingularizations of Galois coverings of the projective plane with Galois group $G$. We obtain local and global $G$‑rigidity criteria for these $G$-surfaces and present several series of such surfaces that are rigid with respect to the action of the deck transformation group.
Keywords: automorphisms of algebraic surfaces, $G$-rigid surfaces, projectively rigid plane curves, dualizing coverings of the projective plane.
@article{TRSPY_2017_298_a10,
     author = {Vik. S. Kulikov and E. I. Shustin},
     title = {On $G${-Rigid} {Surfaces}},
     journal = {Informatics and Automation},
     pages = {144--164},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a10/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - E. I. Shustin
TI  - On $G$-Rigid Surfaces
JO  - Informatics and Automation
PY  - 2017
SP  - 144
EP  - 164
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a10/
LA  - ru
ID  - TRSPY_2017_298_a10
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A E. I. Shustin
%T On $G$-Rigid Surfaces
%J Informatics and Automation
%D 2017
%P 144-164
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a10/
%G ru
%F TRSPY_2017_298_a10
Vik. S. Kulikov; E. I. Shustin. On $G$-Rigid Surfaces. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 144-164. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a10/

[1] Ballico E., Hefez A., “On the Galois group associated to a generically étale morphism”, Commun. Algebra, 14:5 (1986), 899–909 | DOI | MR | Zbl

[2] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer, Berlin, 1984 | MR | Zbl

[3] Beauville A., “Finite simple groups of small essential dimension”, Trends in contemporary mathematics, Springer INdAM Ser., 8, Springer, Cham, 2014, 221–228 | DOI | MR | Zbl

[4] Cartan H., “Quotient d'un espace analytique par un groupe d'automorphismes”, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton Math. Ser., 12, Princeton Univ. Press, Princeton, NJ, 1957, 90–102 | MR | Zbl

[5] Hartshorne R., Deformation theory, Grad. Texts Math., 257, Springer, Berlin, 2010 | DOI | MR | Zbl

[6] Iskovskikh V. A., Pukhlikov A. V., “Biratsionalnye avtomorfizmy mnogomernykh algebraicheskikh mnogoobrazii”, Algebraicheskaya geometriya-1, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 19, VINITI, M., 2001, 5–139

[7] Kulikov Vik. S., “Krivye Gurvitsa”, UMN, 62:6 (2007), 3–86 | DOI | MR | Zbl

[8] Kulikov Vik. S., “Dualiziruyuschie nakrytiya ploskosti”, Izv. RAN. Ser. mat., 79:5 (2015), 163–192 | DOI | MR | Zbl

[9] Kulikov Vik. S., “Ploskie ratsionalnye kvartiki i K3-poverkhnosti”, Tr. MIAN, 294, 2016, 105–140 | Zbl

[10] Kulikov Vik.S., Kharlamov V. M., “Poverkhnosti s DIF$\,\ne \,$DEF veschestvennymi strukturami”, Izv. RAN. Ser. mat., 70:4 (2006), 135–174 | DOI | MR | Zbl

[11] Kulikov Vik. S., Kharlamov V. M., “Avtomorfizmy nakrytii Galua obschikh $m$-kanonicheskikh proektsii”, Izv. RAN. Ser. mat., 73:1 (2009), 121–156 | DOI | MR | Zbl

[12] Kulikov Vik. S., Shustin E., “On rigid plane curves”, Eur. J. Math., 2:1 (2016), 208–226 | DOI | MR | Zbl

[13] Miyaoka Y., “On the Chern numbers of surfaces of general type”, Invent. math., 42 (1977), 225–237 | DOI | MR | Zbl

[14] Mumford D., “The topology of normal singularities of an algebraic surface and a criterion for simplicity”, Publ. Math. Inst. Hautes Étud. Sci., 9 (1961), 5–22 | DOI | MR | Zbl

[15] Nakano S., “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 6:3 (1971), 483–502 | DOI | MR | Zbl

[16] Popov V. L., “Konechnye podgruppy grupp diffeomorfizmov”, Tr. MIAN, 289, 2015, 235–241 | Zbl

[17] Popov V. L., “Chislo komponent nul-konusa”, Tr. MIAN, 290 (2015), 95–101 | Zbl

[18] Popov V. L., “Algebry obschego tipa: ratsionalnaya parametrizatsiya i normalnye formy”, Tr. MIAN, 292 (2016), 209–223 | Zbl

[19] Prokhorov Yu. G., “O trekhmernykh $G$-mnogoobraziyakh Fano”, Izv. RAN. Ser. mat., 79:4 (2015), 159–174 | DOI | MR | Zbl

[20] Przhiyalkovskii V. V., Shramov K. A., “Dvoinye kvadriki s bolshimi gruppami avtomorfizmov”, Tr. MIAN, 294, 2016, 167–190 | Zbl

[21] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Can. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[22] Stein K., “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl

[23] Wahl J. M., “Equisingular deformations of plane algebroid curves”, Trans. Amer. Math. Soc., 193 (1974), 143–170 | DOI | MR | Zbl

[24] Yasinsky E., “Subgroups of odd order in the real plane Cremona group”, J. Algebra, 461 (2016), 87–120 | DOI | MR | Zbl

[25] Yau S.-T., “Calabi's conjecture and some new results in algebraic geometry”, Proc. Natl. Acad. Sci. USA, 74 (1977), 1798–1799 | DOI | MR | Zbl

[26] Zariski O., “Studies in equisingularity. I: Equivalent singularities of plane algebroid curves”, Amer. J. Math., 87 (1965), 507–536 | DOI | MR | Zbl

[27] Zariski O., “Studies in equisingularity. II: Equisingularity in codimension 1 (and characteristic zero)”, Amer. J. Math., 87 (1965), 972–1006 | DOI | MR | Zbl