On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 20-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Holomorphically homogeneous strictly pseudoconvex real hypersurfaces of three-dimensional complex spaces are studied within the coefficient approach. It is shown that the family of surfaces for which a fourth-degree polynomial in the Moser normal equation has a general form is described by at most 13 real parameters. Examples related to the normal equations of tubes over affine homogeneous bases are given which confirm the results of accompanying computer calculations.
@article{TRSPY_2017_298_a1,
     author = {A. V. Atanov and A. V. Loboda and V. I. Sukovykh},
     title = {On {Holomorphic} {Homogeneity} of {Real} {Hypersurfaces} of {General} {Position} in $\mathbb C^3$},
     journal = {Informatics and Automation},
     pages = {20--41},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a1/}
}
TY  - JOUR
AU  - A. V. Atanov
AU  - A. V. Loboda
AU  - V. I. Sukovykh
TI  - On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$
JO  - Informatics and Automation
PY  - 2017
SP  - 20
EP  - 41
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a1/
LA  - ru
ID  - TRSPY_2017_298_a1
ER  - 
%0 Journal Article
%A A. V. Atanov
%A A. V. Loboda
%A V. I. Sukovykh
%T On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$
%J Informatics and Automation
%D 2017
%P 20-41
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a1/
%G ru
%F TRSPY_2017_298_a1
A. V. Atanov; A. V. Loboda; V. I. Sukovykh. On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 20-41. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a1/

[1] Arzhantsev I. V., Letnyaya shkola “Sovremennaya matematika” (Dubna, iyul 2002), MTsNMO, M., 2003

[2] Atanov A. V., Loboda A. V., “Normalnye uravneniya odnorodnykh poverkhnostei s usloviyami na otdelnye koeffitsienty”, Sovremennye metody teorii funktsii i smezhnye problemy, Mater. Mezhdunar. konf. “Voronezhskaya zimnyaya matematicheskaya shkola” (Voronezh, 2017), Izd. dom VGU, Voronezh, 2017, 23–24

[3] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[4] Boldyreva O. A., Loboda A. V., “O koeffitsientnom podkhode k affinnoi odnorodnosti”, Vestn. Voronezh. gos. un-ta. Fizika. Matematika, 2006, no. 1, 109–113 | Zbl

[5] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura Appl. Ser. 4, 11 (1932), 17–90 | DOI | MR

[6] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR

[7] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds. VIII, eds. F. Dillen et al., World Sci., Singapore, 1996, 168–178 | MR | Zbl

[8] Eastwood M., Ezhov V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. dedicata, 77:1 (1999), 11–69 | DOI | MR | Zbl

[9] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb C^3$”, Mat. zametki, 66:4 (1999), 624–626 | DOI

[10] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[11] Isaev A. V., On homogeneous hypersurfaces in $\mathbb C^3$, 2016, arXiv: 1610.07270 [math.CV] | MR

[12] Kolar M., Kossovskiy I., Zaitsev D., “Normal forms in Cauchy–Riemann geometry”, Analysis and geometry in several complex variables, Proc. Workshop (Doha, 2015), Contemp. Math., 681, Amer. Math. Soc., Providence, RI, 2017, 153–177, arXiv: 1606.08091 [math.CV] | DOI | MR | Zbl

[13] Loboda A. V., “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | DOI | MR | Zbl

[14] Loboda A. V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | Zbl

[15] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142 | Zbl

[16] Loboda A. V., “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 73:3 (2003), 453–456 | DOI | MR | Zbl

[17] Loboda A. V., Sukovykh V. I., “Ispolzovanie kompyuternykh algoritmov v zadache koeffitsientnogo opisaniya odnorodnykh poverkhnostei”, Vestn. Voronezh. gos. un-ta. Sistemnyi analiz i inform. tekhnologii, 2015, no. 1, 14–22

[18] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | DOI | MR | Zbl

[19] Sabzevari M., Hashemi A., M.-Alizadeh B., Merker J., “Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms”, Sci. China. Math., 57:9 (2014), 1811–1834, arXiv: 1212.3070 [math.RA] | DOI | MR | Zbl

[20] Smale S., “Mathematical problems for the next century”, Mathematics: Frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 271–294 | MR | Zbl

[21] Sukovykh V. I., “Formuly dlya mladshikh teilorovskikh koeffitsientov odnorodnykh poverkhnostei”, Vestn. Volgogr. gos. un-ta. Ser. 1: Matematika. Fizika, 2016, no. 5, 104–123