Splitting problem for WKB asymptotics in a~nonresonant case and the reduction method for linear systems
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 292-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

As applied to the problem of asymptotic integration of linear systems of ordinary differential equations, we propose a reduction of order method that allows one to effectively construct solutions indistinguishable in the growth/decrease rate at infinity. In the case of a third-order equation, we use the developed approach to answer Bellman's problem on splitting WKB asymptotics of subdominant solutions that decrease at the same rate. For a family of Wigner–von Neumann type potentials, the method allows one to formulate a selection rule for nonresonance values of the parameters (for which the corresponding second-order equation has a Jost solution).
@article{TRSPY_2017_297_a15,
     author = {S. A. Stepin},
     title = {Splitting problem for {WKB} asymptotics in a~nonresonant case and the reduction method for linear systems},
     journal = {Informatics and Automation},
     pages = {292--312},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a15/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Splitting problem for WKB asymptotics in a~nonresonant case and the reduction method for linear systems
JO  - Informatics and Automation
PY  - 2017
SP  - 292
EP  - 312
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a15/
LA  - ru
ID  - TRSPY_2017_297_a15
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Splitting problem for WKB asymptotics in a~nonresonant case and the reduction method for linear systems
%J Informatics and Automation
%D 2017
%P 292-312
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a15/
%G ru
%F TRSPY_2017_297_a15
S. A. Stepin. Splitting problem for WKB asymptotics in a~nonresonant case and the reduction method for linear systems. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 292-312. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a15/

[1] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR

[3] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[4] Harris W. A. (Jr.), Lutz D. A., “A unified theory of asymptotic integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586 | DOI | MR | Zbl

[5] Fedoryuk M. V., “Asimptoticheskie metody v teorii odnomernykh singulyarnykh differentsialnykh operatorov”, Tr. Mosk. mat. o-va, 15, 1966, 296–345 | MR | Zbl

[6] Stepin S. A., “Asimptoticheskoe integrirovanie neostsillyatsionnykh differentsialnykh uravnenii vtorogo poryadka”, DAN, 434:3 (2010), 315–318 | Zbl

[7] Wintner A., “Asymptotic integrations of the adiabatic oscillator”, Amer. J. Math., 69 (1947), 251–272 | DOI | MR | Zbl

[8] Harris W. A. (Jr.), Lutz D. A., “Asymptotic integration of adiabatic oscillators”, J. Math. Anal. Appl., 51 (1975), 76–93 | DOI | MR | Zbl

[9] Stepin S. A., “O resheniyakh tipa Iosta dlya kvazilineinykh uravnenii so stepennoi nelineinostyu”, Tr. MIAN, 236, 2002, 332–337 | MR | Zbl

[10] Nesterov P. N., “Metod usredneniya v zadache asimptoticheskogo integrirovaniya sistem s kolebatelno ubyvayuschimi koeffitsientami”, Dif. uravneniya, 43:6 (2007), 731–742 | MR | Zbl

[11] Nesterov P., “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients”, Monatsh. Math., 171:2 (2013), 217–240 | DOI | MR | Zbl