On the attractors of step skew products over the Bernoulli shift
Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 260-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the statistical and Milnor attractors of step skew products over the Bernoulli shift. In the case when the fiber is a circle, we prove that for a topologically generic step skew product the statistical and Milnor attractors coincide and are Lyapunov stable. To this end we study some properties of the projection of the attractor onto the fiber, which might be of independent interest. In the case when the fiber is a segment, we give a description of the Milnor attractor as the closure of the union of graphs of finitely many almost everywhere defined functions from the base of the skew product to the fiber.
@article{TRSPY_2017_297_a13,
     author = {A. V. Okunev and I. S. Shilin},
     title = {On the attractors of step skew products over the {Bernoulli} shift},
     journal = {Informatics and Automation},
     pages = {260--280},
     publisher = {mathdoc},
     volume = {297},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/}
}
TY  - JOUR
AU  - A. V. Okunev
AU  - I. S. Shilin
TI  - On the attractors of step skew products over the Bernoulli shift
JO  - Informatics and Automation
PY  - 2017
SP  - 260
EP  - 280
VL  - 297
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/
LA  - ru
ID  - TRSPY_2017_297_a13
ER  - 
%0 Journal Article
%A A. V. Okunev
%A I. S. Shilin
%T On the attractors of step skew products over the Bernoulli shift
%J Informatics and Automation
%D 2017
%P 260-280
%V 297
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/
%G ru
%F TRSPY_2017_297_a13
A. V. Okunev; I. S. Shilin. On the attractors of step skew products over the Bernoulli shift. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 260-280. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/

[1] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR | Zbl

[2] Bonatti C., Díaz L. J., Viana M., Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective, Springer, Berlin, 2005 | MR | Zbl

[3] Bonifant A., Milnor J., “Schwarzian derivatives and cylinder maps”, Holomorphic dynamics and renormalization, Fields Inst. Commun., 53, Amer. Math. Soc., Providence, RI, 2008, 1–21 | MR | Zbl

[4] Deroin B., Propriétés ergodiques des groupes de difféomorphismes du cercle par rapport à la mesure de Lebesgue, Preprint, , 2008 http://www.math.ens.fr/~deroin/Publications/coursneuchatel.pdf

[5] Furstenberg H., “Noncommuting random products”, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl

[6] Gorodetski A., Ilyashenko Yu., “Minimal and strange attractors”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 6:6 (1996), 1177–1183 | DOI | MR

[7] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR | Zbl

[8] Ilyashenko Yu., “Thick attractors of step skew products”, Regul. Chaotic Dyn., 15:2–3 (2010), 328–334 | DOI | MR | Zbl

[9] Ilyashenko Yu., “Thick attractors of boundary preserving diffeomorphisms”, Indag. math. New Ser., 22:3–4 (2011), 257–314 | DOI | MR | Zbl

[10] Ilyashenko Yu. S., Kleptsyn V. A., Saltykov P., “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl

[11] Kan I., “Open sets of diffeomorphisms having two attractors, each with everywhere dense basin”, Bull. Amer. Math. Soc., 31 (1994), 68–74 | DOI | MR | Zbl

[12] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[13] Kleptsyn V. A., Nalskii M. B., “Ustoichivost suschestvovaniya negiperbolicheskikh mer dlya $C^1$-diffeomorfizmov”, Funkts. analiz i ego pril., 41:4 (2007), 30–45 | DOI | MR | Zbl

[14] Kleptsyn V., Volk D., “Physical measures for nonlinear random walks on interval”, Moscow Math. J., 14:2 (2014), 339–365 | MR | Zbl

[15] Kleptsyn V., Volk D., “Nonwandering sets of interval skew products”, Nonlinearity, 27:7 (2014), 1595–1601 | DOI | MR | Zbl

[16] Kudryashov Yu. G., Kostlyavye attraktory i magicheskie bilyardy, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2011

[17] Kuratowski K., Topology, v. II, Acad. Press, New York, 1968 | MR

[18] Milnor J., “On the concept of attractor”, Commun. Math. Phys., 99 (1985), 177–195 | DOI | MR | Zbl

[19] Minkov S. S., Okunev A. V., “Omega-predelnye mnozhestva tipichnykh tochek chastichno giperbolicheskikh diffeomorfizmov”, Funkts. analiz i ego pril., 50:1 (2016), 59–66 | DOI | MR | Zbl

[20] Morales C. A., Pacifico M. J., “Mixing attractors for 3-flows”, Nonlinearity, 14:2 (2001), 359–378 | DOI | MR | Zbl

[21] Okunev A., “Milnor attractors of skew products with the fiber a circle”, J. Dyn. Control Syst., 23:2 (2017), 421–433 | DOI | MR | Zbl

[22] Phelps R. R., Convex functions, monotone operators and differentiability, Lect. Notes Math., 1364, 2nd ed., Springer, Berlin, 1993 | MR | Zbl

[23] Santiago B., The semicontinuity lemma, Preprint, , 2012 http://www.professores.uff.br/brunosantiago/wp-content/uploads/sites/17/2017/07/01.pdf

[24] Shilin I., Locally topologically generic diffeomorphisms with Lyapunov unstable Milnor attractors, E-print, 2016, arXiv: 1604.02437[math.DS]

[25] Viana M., Yang J., “Physical measures and absolute continuity for one-dimensional center direction”, Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 30:5 (2013), 845–877 | DOI | MR | Zbl