Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_297_a13, author = {A. V. Okunev and I. S. Shilin}, title = {On the attractors of step skew products over the {Bernoulli} shift}, journal = {Informatics and Automation}, pages = {260--280}, publisher = {mathdoc}, volume = {297}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/} }
A. V. Okunev; I. S. Shilin. On the attractors of step skew products over the Bernoulli shift. Informatics and Automation, Order and chaos in dynamical systems, Tome 297 (2017), pp. 260-280. http://geodesic.mathdoc.fr/item/TRSPY_2017_297_a13/
[1] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR | Zbl
[2] Bonatti C., Díaz L. J., Viana M., Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective, Springer, Berlin, 2005 | MR | Zbl
[3] Bonifant A., Milnor J., “Schwarzian derivatives and cylinder maps”, Holomorphic dynamics and renormalization, Fields Inst. Commun., 53, Amer. Math. Soc., Providence, RI, 2008, 1–21 | MR | Zbl
[4] Deroin B., Propriétés ergodiques des groupes de difféomorphismes du cercle par rapport à la mesure de Lebesgue, Preprint, , 2008 http://www.math.ens.fr/~deroin/Publications/coursneuchatel.pdf
[5] Furstenberg H., “Noncommuting random products”, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl
[6] Gorodetski A., Ilyashenko Yu., “Minimal and strange attractors”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 6:6 (1996), 1177–1183 | DOI | MR
[7] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | DOI | MR | Zbl
[8] Ilyashenko Yu., “Thick attractors of step skew products”, Regul. Chaotic Dyn., 15:2–3 (2010), 328–334 | DOI | MR | Zbl
[9] Ilyashenko Yu., “Thick attractors of boundary preserving diffeomorphisms”, Indag. math. New Ser., 22:3–4 (2011), 257–314 | DOI | MR | Zbl
[10] Ilyashenko Yu. S., Kleptsyn V. A., Saltykov P., “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl
[11] Kan I., “Open sets of diffeomorphisms having two attractors, each with everywhere dense basin”, Bull. Amer. Math. Soc., 31 (1994), 68–74 | DOI | MR | Zbl
[12] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[13] Kleptsyn V. A., Nalskii M. B., “Ustoichivost suschestvovaniya negiperbolicheskikh mer dlya $C^1$-diffeomorfizmov”, Funkts. analiz i ego pril., 41:4 (2007), 30–45 | DOI | MR | Zbl
[14] Kleptsyn V., Volk D., “Physical measures for nonlinear random walks on interval”, Moscow Math. J., 14:2 (2014), 339–365 | MR | Zbl
[15] Kleptsyn V., Volk D., “Nonwandering sets of interval skew products”, Nonlinearity, 27:7 (2014), 1595–1601 | DOI | MR | Zbl
[16] Kudryashov Yu. G., Kostlyavye attraktory i magicheskie bilyardy, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2011
[17] Kuratowski K., Topology, v. II, Acad. Press, New York, 1968 | MR
[18] Milnor J., “On the concept of attractor”, Commun. Math. Phys., 99 (1985), 177–195 | DOI | MR | Zbl
[19] Minkov S. S., Okunev A. V., “Omega-predelnye mnozhestva tipichnykh tochek chastichno giperbolicheskikh diffeomorfizmov”, Funkts. analiz i ego pril., 50:1 (2016), 59–66 | DOI | MR | Zbl
[20] Morales C. A., Pacifico M. J., “Mixing attractors for 3-flows”, Nonlinearity, 14:2 (2001), 359–378 | DOI | MR | Zbl
[21] Okunev A., “Milnor attractors of skew products with the fiber a circle”, J. Dyn. Control Syst., 23:2 (2017), 421–433 | DOI | MR | Zbl
[22] Phelps R. R., Convex functions, monotone operators and differentiability, Lect. Notes Math., 1364, 2nd ed., Springer, Berlin, 1993 | MR | Zbl
[23] Santiago B., The semicontinuity lemma, Preprint, , 2012 http://www.professores.uff.br/brunosantiago/wp-content/uploads/sites/17/2017/07/01.pdf
[24] Shilin I., Locally topologically generic diffeomorphisms with Lyapunov unstable Milnor attractors, E-print, 2016, arXiv: 1604.02437[math.DS]
[25] Viana M., Yang J., “Physical measures and absolute continuity for one-dimensional center direction”, Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 30:5 (2013), 845–877 | DOI | MR | Zbl