A strengthening of a theorem of Bourgain and Kontorovich. V
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 133-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the denominators of finite continued fractions all of whose partial quotients belong to an arbitrary finite alphabet $\mathcal A$ with parameter $\delta >0.7807\dots $ (i.e., such that the set of infinite continued fractions with partial quotients from this alphabet is of Hausdorff dimension $\delta $ with $\delta >0.7807\dots $) contain a positive proportion of positive integers. Earlier, a similar theorem has been obtained only for alphabets with somewhat greater values of $\delta $. Namely, the first result of this kind for an arbitrary finite alphabet with $\delta >0.9839\dots $ is due to Bourgain and Kontorovich (2011). Then, in 2013, D.A. Frolenkov and the present author proved such a theorem for an arbitrary finite alphabet with $\delta >0.8333\dots $. The preceding result of 2015 of the present author concerned an arbitrary finite alphabet with $\delta >0.7862\dots $.
@article{TRSPY_2017_296_a9,
     author = {I. D. Kan},
     title = {A strengthening of a theorem of {Bourgain} and {Kontorovich.} {V}},
     journal = {Informatics and Automation},
     pages = {133--139},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a9/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - A strengthening of a theorem of Bourgain and Kontorovich. V
JO  - Informatics and Automation
PY  - 2017
SP  - 133
EP  - 139
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a9/
LA  - ru
ID  - TRSPY_2017_296_a9
ER  - 
%0 Journal Article
%A I. D. Kan
%T A strengthening of a theorem of Bourgain and Kontorovich. V
%J Informatics and Automation
%D 2017
%P 133-139
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a9/
%G ru
%F TRSPY_2017_296_a9
I. D. Kan. A strengthening of a theorem of Bourgain and Kontorovich. V. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 133-139. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a9/

[1] Zaremba S. K., “La méthode des “bons treillis” pour le calcul des intégrales multiples”, Applications of number theory to numerical analysis, Proc. Symp. (Montreal, 1971), Acad. Press, New York, 1972, 39–119 | DOI | MR

[2] Bourgain J., Kontorovich A., “On Zaremba's conjecture”, Ann. Math. Ser. 2, 180:1 (2014), 137–196 | DOI | MR | Zbl

[3] Moshchevitin N., On some open problems in Diophantine approximation, E-print, 2012, arXiv: 1202.4539v4[math.NT]

[4] Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, E-print, 2012, arXiv: 1207.4546[math.NT]

[5] Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem, E-print, 2012, arXiv: 1207.5168[math.NT]

[6] Kan I. D., Frolenkov D. A., “Usilenie teoremy Burgeina–Kontorovicha”, Iz. RAN. Ser. mat., 78:2 (2014), 87–144 | DOI | MR | Zbl

[7] Frolenkov D. A., Kan I. D., “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Comb. Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[8] Kan I. D., “Usilenie teoremy Burgeina–Kontorovicha. III”, Izv. RAN. Ser. mat., 79:2 (2015), 77–100 | DOI | MR | Zbl

[9] Huang S., “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl

[10] Kan I. D., “Usilenie teoremy Burgeina–Kontorovicha. IV”, Izv. RAN. Ser. mat., 80:6 (2016), 103–126 | DOI | MR | Zbl

[11] Magee M., Oh H., Winter D., Uniform congruence counting for Schottky semigroups in $\mathrm {SL}_2(\mathbf Z)$, E-print, 2016, arXiv: 1601.03705v2[math.NT]

[12] Von R., Metod Khardi–Littlvuda, Mir, M., 1985 | MR