A note on Linnik's approach to the Dirichlet $L$-functions
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 123-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\chi \pmod q$, $q>1$, be a primitive Dirichlet character. We first present a detailed account of Linnik's deduction of the functional equation of $L(s,\chi )$ from the functional equation of $\zeta (s)$. Then we show that the opposite deduction can be obtained by a suitable modification of the method, involving finer arithmetic arguments.
@article{TRSPY_2017_296_a8,
     author = {J. Kaczorowski and A. Perelli},
     title = {A note on {Linnik's} approach to the {Dirichlet} $L$-functions},
     journal = {Informatics and Automation},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a8/}
}
TY  - JOUR
AU  - J. Kaczorowski
AU  - A. Perelli
TI  - A note on Linnik's approach to the Dirichlet $L$-functions
JO  - Informatics and Automation
PY  - 2017
SP  - 123
EP  - 132
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a8/
LA  - ru
ID  - TRSPY_2017_296_a8
ER  - 
%0 Journal Article
%A J. Kaczorowski
%A A. Perelli
%T A note on Linnik's approach to the Dirichlet $L$-functions
%J Informatics and Automation
%D 2017
%P 123-132
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a8/
%G ru
%F TRSPY_2017_296_a8
J. Kaczorowski; A. Perelli. A note on Linnik's approach to the Dirichlet $L$-functions. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 123-132. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a8/

[1] Berndt B. C., Evans R. J., Williams K. S., Gauss and Jacobi sums, J. Wiley Sons, New York, 1998 | MR | Zbl

[2] Davenport H., Multiplicative number theory, Rev. by H. L. Montgomery, 2nd ed., Springer, New York, 1980 | MR | Zbl

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, Bateman Manuscript Project, McGraw-Hill, New York, 1953 | Zbl

[4] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Tables of integral transforms, v. 1, Bateman Manuscript Project, McGraw-Hill, New York, 1954 | Zbl

[5] Kaczorowski J., “Axiomatic theory of $L$-functions: the Selberg class”, Analytic number theory, C.I.M.E. Summer School (Cetraro, Italy, 2002), Lect. Notes Math., 1891, eds. A. Perelli, C. Viola, Springer, Berlin, 2006, 133–209 | DOI | MR

[6] Kaczorowski J., Perelli A., “On the structure of the Selberg class. I: $0\leq d\leq1$”, Acta math., 182:2 (1999), 207–241 | DOI | MR | Zbl

[7] Kaczorowski J., Perelli A., “The Selberg class: A survey”, Number theory in progress, Proc. Conf. in honor of A. Schinzel (Zakopane, Poland, 1997), v. 2, eds. K. Györy et al., de Gruyter, Berlin, 1999, 953–992 | MR | Zbl

[8] Kaczorowski J., Perelli A., “On the Linnik–Sprindžuk theorem about the zeros of $L$-functions”, Acta arith., 133:1 (2008), 83–96 | DOI | MR | Zbl

[9] Linnik Yu. V., “O vyrazhenii $L$-ryadov cherez $\zeta$-funktsiyu”, DAN SSSR, 57:5 (1947), 435–437 | Zbl

[10] Montgomery H. L., Vaughan R. C., Multiplicative number theory, v. I, Classical theory, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[11] Paris R. B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[12] Perelli A., “A survey of the Selberg class of $L$-functions. I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl

[13] Perelli A., “A survey of the Selberg class of $L$-functions. II”, Riv. Mat. Univ. Parma. Ser. 7, 3 (2004), 83–118 | MR | Zbl

[14] Perelli A., “Non-linear twists of $L$-functions: A survey”, Milan J. Math., 78:1 (2010), 117–134 | DOI | MR | Zbl

[15] Sprindzhuk V. G., “Vertikalnoe raspredelenie nulei dzeta-funktsii i rasshirennaya gipoteza Rimana”, Acta arith., 27 (1975), 317–332 | Zbl

[16] Sprindžuk V. G., “On extended Riemann hypothesis”, Topics in number theory (Debrecen, 1974), Colloq. Math. Soc. J. Bolyai, 13, ed. P. Turán, North-Holland, Amsterdam, 1976, 369–372 | MR

[17] Suzuki M., “A relation between the zeros of an $L$-function belonging to the Selberg class and the zeros of an associated $L$-function twisted by a Dirichlet character”, Arch. Math., 83:6 (2004), 514–527 | DOI | MR | Zbl