Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_296_a6, author = {D. R. Heath-Brown}, title = {A new $k$th derivative estimate for exponential sums via {Vinogradov's} mean value}, journal = {Informatics and Automation}, pages = {95--110}, publisher = {mathdoc}, volume = {296}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/} }
D. R. Heath-Brown. A new $k$th derivative estimate for exponential sums via Vinogradov's mean value. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 95-110. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/
[1] Bourgain J., Demeter C., Guth L., “Proof of the main conjecture in Vinogradov's mean value theorem for degrees higher than three”, Ann. Math. Ser. 2, 184:2 (2016), 633–682 ; arXiv: 1512.01565[math.NT] | DOI | MR | Zbl
[2] Ford K., “Vinogradov's integral and bounds for the Riemann zeta function”, Proc. London Math. Soc. Ser. 3, 85:3 (2002), 565–633 | DOI | MR | Zbl
[3] Gritsenko S. A., “Ob otsenkakh trigonometricheskikh summ po tretei proizvodnoi”, Mat. zametki, 60:3 (1996), 383–389 | DOI | MR | Zbl
[4] Korobov N. M., “Otsenki trigonometricheskikh summ i ikh prilozheniya”, UMN, 13:4 (1958), 185–192 | MR | Zbl
[5] Montgomery H. L., Topics in multiplicative number theory, Lect. Notes Math., 227, Springer, Berlin, 1971 | DOI | MR | Zbl
[6] Robert O., “On van der Corput's $k$-th derivative test for exponential sums”, Indag. math. New Ser., 27:2 (2016), 559–589 | DOI | MR | Zbl
[7] Robert O., Sargos P., “A fourth derivative test for exponential sums”, Compos. Math., 130:3 (2002), 275–292 | DOI | MR | Zbl
[8] Sargos P., “Points entiers au voisinage d'une courbe, sommes trigonométriques courtes et paires d'exposants”, Proc. London Math. Soc. Ser. 3, 70:2 (1995), 285–312 | DOI | MR | Zbl
[9] Sargos P., “An analog of van der Corput's $A^4$-process for exponential sums”, Acta arith., 110:3 (2003), 219–231 | DOI | MR | Zbl
[10] Titchmarsh E. C., The theory of the Riemann zeta-function, 2nd ed., Clarendon Press, Oxford, 1986 | MR | Zbl
[11] Vinogradov I. M., “Novye otsenki summ Veilya”, DAN SSSR, 3:5 (1935), 195–198 | Zbl
[12] Vinogradov I. M., “Novaya otsenka funktsii $\zeta(1+it)$”, Izv. AN SSSR. Ser. mat., 22:2 (1958), 161–164 | MR | Zbl
[13] Wooley T. D., “The cubic case of the main conjecture in Vinogradov's mean value theorem”, Adv. Math., 294 (2016), 532–561 ; arXiv: 1401.3150[math.NT] | DOI | MR | Zbl