A new $k$th derivative estimate for exponential sums via Vinogradov's mean value
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 95-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov's mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new $k$th derivative estimate. Roughly speaking, this improves the van der Corput estimate for $k\ge 4$. Various corollaries are given, showing for example that $\zeta (\sigma +it)\ll _{\varepsilon }t^{(1-\sigma )^{3/2}/2+\varepsilon }$ for $t\ge 2$ and $0\le \sigma \le 1$, for any fixed $\varepsilon >0$.
@article{TRSPY_2017_296_a6,
     author = {D. R. Heath-Brown},
     title = {A new $k$th derivative estimate for exponential sums via {Vinogradov's} mean value},
     journal = {Informatics and Automation},
     pages = {95--110},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/}
}
TY  - JOUR
AU  - D. R. Heath-Brown
TI  - A new $k$th derivative estimate for exponential sums via Vinogradov's mean value
JO  - Informatics and Automation
PY  - 2017
SP  - 95
EP  - 110
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/
LA  - ru
ID  - TRSPY_2017_296_a6
ER  - 
%0 Journal Article
%A D. R. Heath-Brown
%T A new $k$th derivative estimate for exponential sums via Vinogradov's mean value
%J Informatics and Automation
%D 2017
%P 95-110
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/
%G ru
%F TRSPY_2017_296_a6
D. R. Heath-Brown. A new $k$th derivative estimate for exponential sums via Vinogradov's mean value. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 95-110. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a6/