On the zeros of the Davenport--Heilbronn function
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N_0(T)$ be the number of zeros of the Davenport–Heilbronn function in the interval $[1/2,1/2+iT]$. It is proved that $N_0(T)\gg T(\ln T)^{1/2+1/16-\varepsilon }$, where $\varepsilon $ is an arbitrarily small positive number.
@article{TRSPY_2017_296_a5,
     author = {S. A. Gritsenko},
     title = {On the zeros of the {Davenport--Heilbronn} function},
     journal = {Informatics and Automation},
     pages = {72--94},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a5/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - On the zeros of the Davenport--Heilbronn function
JO  - Informatics and Automation
PY  - 2017
SP  - 72
EP  - 94
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a5/
LA  - ru
ID  - TRSPY_2017_296_a5
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T On the zeros of the Davenport--Heilbronn function
%J Informatics and Automation
%D 2017
%P 72-94
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a5/
%G ru
%F TRSPY_2017_296_a5
S. A. Gritsenko. On the zeros of the Davenport--Heilbronn function. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 72-94. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a5/

[1] Davenport H., Heilbronn H., “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR | Zbl

[2] Gritsenko S. A., “Ob odnoi zadache A. A. Karatsuby”, Mat. zametki, 88:4 (2010), 517–528 | DOI | MR | Zbl

[3] Heath-Brown D. R., “Fractional moments of the Riemann zeta-function”, J. London Math. Soc. Ser. 2, 24 (1981), 65–78 | DOI | MR | Zbl

[4] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, J. Wiley Sons, New York, 1985 | MR | Zbl

[5] Karatsuba A. A., “Dzeta-funktsiya Rimana i ee nuli”, UMN, 40:5 (1985), 19–70 | MR | Zbl

[6] Karatsuba A. A., “O nulyakh funktsii Devenporta–Kheilbronna, lezhaschikh na kriticheskoi pryamoi”, Izv. AN SSSR. Ser. mat., 54:2 (1990), 303–315 | MR | Zbl

[7] Karatsuba A. A., “O nulyakh arifmeticheskikh ryadov Dirikhle, ne imeyuschikh eilerova proizvedeniya”, Izv. RAN. Ser. mat., 57:5 (1993), 3–14 | MR | Zbl

[8] Karatsuba A. A., “Novyi podkhod k probleme nulei nekotorykh ryadov Dirikhle”, Tr. MIAN, 207, 1994, 180–196 | MR | Zbl

[9] Karatsuba A. A., “Drobnye momenty i nuli $\zeta(s)$ na kriticheskoi pryamoi”, Mat. zametki, 72:4 (2002), 502–508 | DOI | MR | Zbl

[10] Rezvyakova I. S., “O nulyakh lineinykh kombinatsii L-funktsii stepeni dva na kriticheskoi pryamoi: podkhod Selberga”, Izv. RAN. Ser. mat., 80:3 (2016), 151–172 | DOI | MR | Zbl

[11] Selberg A., On the zeros of Riemann's zeta-function, Skr. Norske Vid.-Akad., 1942, no. 10, J. Dybwad, Oslo, 1943 | MR

[12] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit., M., 1953 | MR

[13] Voronin S. M., “O nulyakh nekotorykh ryadov Dirikhle, lezhaschikh na kriticheskoi pryamoi”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 63–91 | MR | Zbl

[14] Voronin S. M., “O raspredelenii nulei nekotorykh ryadov Dirikhle”, Tr. MIAN, 163, 1984, 74–77 | MR | Zbl