Distribution of zeta zeros and the oscillation of the error term of the prime number theorem
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 207-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

An 84-year-old classical result of Ingham states that a rather general zero-free region of the Riemann zeta function implies an upper bound for the absolute value of the remainder term of the prime number theorem. In 1950 Turán proved a partial conversion of the mentioned theorem of Ingham. Later the author proved sharper forms of both Ingham's theorem and its conversion by Turán. The present work shows a very general theorem which describes the average and the maximal order of the error terms by a relatively simple function of the distribution of the zeta zeros. It is proved that the maximal term in the explicit formula of the remainder term coincides with high accuracy with the average and maximal order of the error term.
@article{TRSPY_2017_296_a15,
     author = {J. Pintz},
     title = {Distribution of zeta zeros and the oscillation of the error term of the prime number theorem},
     journal = {Informatics and Automation},
     pages = {207--219},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a15/}
}
TY  - JOUR
AU  - J. Pintz
TI  - Distribution of zeta zeros and the oscillation of the error term of the prime number theorem
JO  - Informatics and Automation
PY  - 2017
SP  - 207
EP  - 219
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a15/
LA  - ru
ID  - TRSPY_2017_296_a15
ER  - 
%0 Journal Article
%A J. Pintz
%T Distribution of zeta zeros and the oscillation of the error term of the prime number theorem
%J Informatics and Automation
%D 2017
%P 207-219
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a15/
%G ru
%F TRSPY_2017_296_a15
J. Pintz. Distribution of zeta zeros and the oscillation of the error term of the prime number theorem. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 207-219. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a15/

[1] Carlson F., “Über die Nullstellen der Dirichletschen Reihen und der Riemannschen $\zeta$-Funktion”, Ark. Mat. Astron. Fys., 15:20 (1921), 28 | Zbl

[2] Ingham A. E., The distribution of prime numbers, Univ. Press, Cambridge, 1932 | MR | Zbl

[3] Knapowski S., “On the mean values of certain functions in prime number theory”, Acta math. Acad. sci. Hung., 10 (1959), 375–390 | DOI | MR | Zbl

[4] von Koch H., “Sur un théorème concernant les nombres premiers”, Ark. Mat. Astron. Fys., 1 (1904), 481–488 | Zbl

[5] Littlewood J. E., “Sur la distribution des nombres premiers”, C. r. Acad. sci. Paris, 158 (1914), 1869–1872 | Zbl

[6] Phragmén E., “Sur le logarithme intégral et la fonction $f(x)$ de Riemann”, Stockh. Öfv., 48 (1891), 599–616 | Zbl

[7] Pintz J., “On the remainder term of the prime number formula. I: On a problem of Littlewood”, Acta arith., 36 (1980), 341–365 | MR | Zbl

[8] Pintz J., “On the remainder term of the prime number formula. II: On a theorem of Ingham”, Acta arith., 37 (1980), 209–220 | MR | Zbl

[9] Pintz J., “On the remainder term of the prime number formula. V: Effective mean value theorems”, Stud. sci. math. Hung., 15 (1980), 215–223 | MR | Zbl

[10] Riemann B., “Über die Anzahl der Primzahlen unter einer gegebenen Größe”, Monatsber. K. Preuß. Akad. Wiss. Berlin, 1859, 671–680

[11] Sós V. T., Turán P., “On some new theorems in the theory of Diophantine approximations”, Acta math. Acad. sci. Hung., 6 (1955), 241–255 | DOI | MR | Zbl

[12] Staś W., “Über die Umkehrung eines Satzes von Ingham”, Acta arith., 6 (1961), 435–446 | MR | Zbl

[13] Turán P., “On the remainder-term of the prime number formula. II”, Acta math. Acad. sci. Hung., 1 (1950), 155–166 | DOI | MR | Zbl

[14] Turán P., On a new method of analysis and its applications, With the assistance of G. Halász, J. Pintz. With a foreword by V. T. Sós, Pure Appl. Math., J. Wiley Sons, New York, 1984 | MR | Zbl

[15] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Tr. MIAN, 23, Izd-vo AN SSSR, M.–L., 1947 | MR | Zbl

[16] Wiener N., “Tauberian theorems”, Ann. Math. Ser. 2, 33 (1932), 1–100 | DOI | MR | Zbl