A discrete version of the Mishou theorem. II
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 181-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2007, H. Mishou obtained a joint universality theorem for the Riemann zeta-function $\zeta (s)$ and the Hurwitz zeta-function $\zeta (s,\alpha )$ with transcendental parameter $\alpha $. The theorem states that a pair of analytic functions can be simultaneously approximated by the shifts $\zeta (s+i\tau )$ and $\zeta (s+i\tau ,\alpha )$, $\tau \in \mathbb R$. In 2015, E. Buivydas and the author established a version of this theorem in which the approximation is performed by the discrete shifts $\zeta (s+ikh)$ and $\zeta (s+ikh,\alpha )$, $h>0$, $k=0,1,2\dots {}\kern 1pt$. In the present study, we prove joint universality for the functions $\zeta (s)$ and $\zeta (s,\alpha )$ in the sense of approximation of a pair of analytic functions by the shifts $\zeta (s+ik^\beta h)$ and $\zeta (s+ik^\beta h,\alpha )$ with fixed $0\beta 1$.
@article{TRSPY_2017_296_a13,
     author = {A. Laurin\v{c}ikas},
     title = {A discrete version of the {Mishou} theorem. {II}},
     journal = {Informatics and Automation},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a13/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - A discrete version of the Mishou theorem. II
JO  - Informatics and Automation
PY  - 2017
SP  - 181
EP  - 191
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a13/
LA  - ru
ID  - TRSPY_2017_296_a13
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T A discrete version of the Mishou theorem. II
%J Informatics and Automation
%D 2017
%P 181-191
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a13/
%G ru
%F TRSPY_2017_296_a13
A. Laurinčikas. A discrete version of the Mishou theorem. II. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 181-191. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a13/

[1] Billingsley P., Convergence of probability measures, J. Willey and Sons, New York, 1968 | MR | Zbl

[2] Buivydas E., Laurinčikas A., “A discrete version of the Mishou theorem”, Ramanujan J., 38:2 (2015), 331–347 | DOI | MR | Zbl

[3] Conway J. B., Functions of one complex variable, Springer, New York, 1973 | MR | Zbl

[4] Heyer H., Probability measures on locally compact groups, Springer, Berlin, 1977 | MR | Zbl

[5] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Stud. sci. math. Hung., 48:2 (2011), 257–279 | MR

[6] Kuipers L., Niederreiter H., Uniform distribution of sequences, Dover, New York, 2006 | MR

[7] Laurinčikas A., Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht, 1996 | MR

[8] Laurinčikas A., “The universality of zeta-functions”, Acta appl. math., 78:1–3 (2003), 251–271 | MR | Zbl

[9] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer, Dordrecht, 2002 | MR | Zbl

[10] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number theory: Plowing and starring throught high wave forms, Proc. 7th China–Japan Semin., Ser. Number Theory Appl., 11, eds. M. Kaneko, S. Kanemitsu, J. Liu, World Scientific, Hackensack, NJ, 2015, 95–144 | DOI | MR | Zbl

[11] Mishou H., “The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions”, Lith. Math. J., 47:1 (2007), 32–47 | DOI | MR | Zbl

[12] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (1952), 31–122 | MR | Zbl

[13] Montgomery H. L., Topics in multiplicative number theory, Lect. Notes Math., 227, Springer, Berlin, 1971 | DOI | MR | Zbl

[14] Steuding J., Value-distribution of $L$-functions, Lect. Notes Math., 1877, Springer, Berlin, 2007 | MR | Zbl