On some mean values for the divisor function and the Riemann zeta-function
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 150-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Delta (x)$ and $E(x)$ denote respectively the error terms in the summatory formula for the divisor function and in the mean square formula for $\zeta (s)$ on the critical line. We consider some general mean values for $\Delta (x)$ and $E(x)$ and discover interesting differences between these two functions. In particular, this yields evidence that $E(x)$ is more negative than $\Delta (x)$.
@article{TRSPY_2017_296_a11,
     author = {Kar-Lun Kong and Kai-Man Tsang},
     title = {On some mean values for the divisor function and the {Riemann} zeta-function},
     journal = {Informatics and Automation},
     pages = {150--162},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a11/}
}
TY  - JOUR
AU  - Kar-Lun Kong
AU  - Kai-Man Tsang
TI  - On some mean values for the divisor function and the Riemann zeta-function
JO  - Informatics and Automation
PY  - 2017
SP  - 150
EP  - 162
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a11/
LA  - ru
ID  - TRSPY_2017_296_a11
ER  - 
%0 Journal Article
%A Kar-Lun Kong
%A Kai-Man Tsang
%T On some mean values for the divisor function and the Riemann zeta-function
%J Informatics and Automation
%D 2017
%P 150-162
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a11/
%G ru
%F TRSPY_2017_296_a11
Kar-Lun Kong; Kai-Man Tsang. On some mean values for the divisor function and the Riemann zeta-function. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 150-162. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a11/

[1] Atkinson F. V., “The mean-value of the Riemann zeta function”, Acta math., 81 (1949), 353–376 | DOI | MR | Zbl

[2] Heath-Brown D. R., “The mean value theorem for the Riemann zeta-function”, Mathematika, 25 (1978), 177–184 | DOI | MR

[3] Heath-Brown D. R., Tsang K., “Sign changes of $E(T)$, $\Delta (x)$, and $P(x)$”, J. Number Theory, 49:1 (1994), 73–83 | DOI | MR | Zbl

[4] Ivić A., Sargos P., “On the higher moments of the error term in the divisor problem”, Ill. J. Math., 51:2 (2007), 353–377 | MR | Zbl

[5] Jutila M., “On a formula of Atkinson”, Topics in classical number theory, Colloq. (Budapest, 1981), v. 1, Colloq. Math. Soc. János Bolyai, 34, North-Holland, Amsterdam, 1984, 807–823 | MR

[6] Tong K.-C., “On divisor problems. III”, Acta math. Sin., 6 (1956), 515–541 | MR | Zbl

[7] Tsang K.-M., “Higher-power moments of $\Delta (x)$, $E(t)$ and $P(x)$”, Proc. London Math. Soc. Ser. 3, 65:1 (1992), 65–84 | DOI | MR | Zbl

[8] Tsang K.-M., “Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function”, Sci. China. Math., 53:9 (2010), 2561–2572 | DOI | MR | Zbl

[9] Voronoï G., “Sur une fonction transcendante et ses applications à la sommation de quelques séries”, Ann. sci. Éc. Norm. Super. Sér. 3, 21 (1904), 207–267 | MR | Zbl

[10] Zhai W., “On higher-power moments of $\Delta(x)$”, Acta arith., 112:4 (2004), 367–395 | DOI | MR | Zbl

[11] Zhai W., “On higher-power moments of $E(t)$”, Acta arith., 115:4 (2004), 329–348 | DOI | MR | Zbl