Weil groups and the distribution of prime ideals
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Chebotarev's density theorem to Weil groups. Since the Artin–Weil conjecture on the integrality of the Artin–Hecke $L$-functions, constructed by A. Weil, has not been completely proved so far, we estimate the character sums both under and without the assumption of the validity of that conjecture.
@article{TRSPY_2017_296_a10,
     author = {T. Kleberger and B. Z. Moroz},
     title = {Weil groups and the distribution of prime ideals},
     journal = {Informatics and Automation},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/}
}
TY  - JOUR
AU  - T. Kleberger
AU  - B. Z. Moroz
TI  - Weil groups and the distribution of prime ideals
JO  - Informatics and Automation
PY  - 2017
SP  - 140
EP  - 149
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/
LA  - ru
ID  - TRSPY_2017_296_a10
ER  - 
%0 Journal Article
%A T. Kleberger
%A B. Z. Moroz
%T Weil groups and the distribution of prime ideals
%J Informatics and Automation
%D 2017
%P 140-149
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/
%G ru
%F TRSPY_2017_296_a10
T. Kleberger; B. Z. Moroz. Weil groups and the distribution of prime ideals. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/