Weil groups and the distribution of prime ideals
Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Chebotarev's density theorem to Weil groups. Since the Artin–Weil conjecture on the integrality of the Artin–Hecke $L$-functions, constructed by A. Weil, has not been completely proved so far, we estimate the character sums both under and without the assumption of the validity of that conjecture.
@article{TRSPY_2017_296_a10,
     author = {T. Kleberger and B. Z. Moroz},
     title = {Weil groups and the distribution of prime ideals},
     journal = {Informatics and Automation},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/}
}
TY  - JOUR
AU  - T. Kleberger
AU  - B. Z. Moroz
TI  - Weil groups and the distribution of prime ideals
JO  - Informatics and Automation
PY  - 2017
SP  - 140
EP  - 149
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/
LA  - ru
ID  - TRSPY_2017_296_a10
ER  - 
%0 Journal Article
%A T. Kleberger
%A B. Z. Moroz
%T Weil groups and the distribution of prime ideals
%J Informatics and Automation
%D 2017
%P 140-149
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/
%G ru
%F TRSPY_2017_296_a10
T. Kleberger; B. Z. Moroz. Weil groups and the distribution of prime ideals. Informatics and Automation, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149. http://geodesic.mathdoc.fr/item/TRSPY_2017_296_a10/

[1] Artin E., “Über eine neue Art von $L$-Reihen”, Abh. Math. Semin. Univ. Hamburg, 3 (1924), 89–108 | DOI | MR

[2] Artin E., Tate J., Class field theory, W. A. Benjamin, New York, 1968 | MR | Zbl

[3] Carletti E., Monti Bragadin G., Perelli A., “On general $L$-functions”, Acta arith., 66:2 (1994), 147–179 | MR | Zbl

[4] Hasse H., Zetafunktionen und $L$-Funktionen zu einem arithmetischen Funktionenkörper vom Fermatschen Typus, Abh. Deutsch. Akad. Wiss. Berlin. Math.-Naturw. Kl., 1954, no. 4, Akad.-Verlag, Berlin, 1955 | MR | Zbl

[5] Hecke E., “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen (zweite Mitteilung)”, Math. Z., 6:1–2 (1920), 11–51 | DOI | MR

[6] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[7] Kleberger T., Charaktersummen Weilscher Darstellungen, Master's Thesis Math., Math.-Naturwiss. Fak. Rhein. Friedrich-Wilhelms-Univ. Bonn, Bonn, 2015

[8] Kubilyus I. P., “O nekotorykh zadachakh geometrii prostykh chisel”, Mat. sb., 31(73):3 (1952), 507–542 | MR | Zbl

[9] Lagarias J. C., Montgomery H. L., Odlyzko A. M., “A bound for the least prime in the Chebotarev density theorem”, Invent. math., 54 (1979), 271–296 | DOI | MR | Zbl

[10] Mitsui T., “Generalized prime number theorem”, Jpn. J. Math., 26 (1956), 1–42 | MR

[11] Moreno C. J., Advanced analytic number theory: $L$-functions, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[12] Moroz B. Z., Analytic arithmetic in algebraic number fields, Lect. Notes Math., 1205, Springer, Berlin, 1986 | DOI | MR | Zbl

[13] Rademacher H., “On the Phragmén–Lindelöf theorem and some applications”, Math. Z., 72 (1959), 192–204 | DOI | MR | Zbl

[14] Tamagawa T., “On the functional equation of the generalized $L$-function”, J. Fac. Sci. Univ. Tokyo. Sect. I, 6 (1953), 421–428 | MR | Zbl

[15] Tate J., “Number theoretic background”, Automorphic Forms, Representations and $L$-Functions, Part 2, Proc. Symp. Pure Math., 33, Am. Math. Soc., Providence, RI, 1979, 3–26 ; Teit Dzh., “Teoretiko-chislovoe vvedenie”, Avtomorfnye formy, predstavleniya i $L$-funktsii, Sb. st., Mir, M., 1984, 73–112 | DOI | MR | Zbl

[16] Weil A., “Sur la théorie du corps de classes”, J. Math. Soc. Jpn., 3 (1951), 1–35 | DOI | MR | Zbl

[17] Weil A., “Sur les formules explicites de la théorie des nombres”, Izv. AN SSSR. Ser. mat., 36:1 (1972), 3–18 | MR | Zbl

[18] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR