Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_295_a15, author = {A. V. Tsiganov}, title = {Abel's theorem and {B\"acklund} transformations for the {Hamilton--Jacobi} equations}, journal = {Informatics and Automation}, pages = {261--291}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/} }
A. V. Tsiganov. Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 261-291. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/
[1] Abel N. H., “Mémoire sur une propriété générale d'une classe très-étendue de fonctions transcendantes”, Oeuvres complètes, v. 1, Grondahl Son, Christiania, 1881, 145–211
[2] Baker H. F., Abel's theorem and the allied theory, including the theory of the theta functions, Univ. Press, Cambridge, 1897 | Zbl
[3] Bizayev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A: Math. Theor., 46:8 (2013), 085202 | DOI | MR
[4] Bobenko A. I., Suris Yu. B., Discrete differential geometry. Integrable structure, Grad. Stud. Math., 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl
[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, In-t kompyut. issled., M.–Izhevsk, 2005 | MR
[6] Borisov A. V., Mamaev I. S., Tsyganov A. V., “Negolonomnaya dinamika i puassonova geometriya”, UMN, 69:3 (2014), 87–144 | DOI | MR | Zbl
[7] Braden H. W., Enolski V. Z., Fedorov Yu. N., “Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion”, Nonlinearity, 26:7 (2013), 1865–1889 | DOI | MR | Zbl
[8] Chaplygin S. A., “Novoe chastnoe rѣshenie zadachi o vraschenii tyazhelago tverdago tѣla vokrug' nepodvizhnoi tochki”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 12:1 (1904), 1–4
[9] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Teubner, Leipzig, 1866
[10] Dubrovin B. A., Rimanovy poverkhnosti i nelineinye uravneniya, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2001
[11] Dullin H. R., Matveev V. S., “A new integrable system on the sphere”, Math. Res. Lett., 11 (2004), 715–722 | DOI | MR | Zbl
[12] Eiler L., Integralnoe ischislenie, Gostekhizdat, M., 1956
[13] Goryachev D. N., “O dvizhenii tyazhelago tverdago tѣla vokrug' nepodvizhnoi tochki v' sluchaѣ$A=B=4C$”, Mat. sb., 21:3 (1900), 431–438 | Zbl
[14] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshav. univ. izv., 1916, no. 3, 3–15
[15] Green M. L., Griffiths P. A., “Abel's differential equations”, Houston J. Math., 28:2 (2002), 329–351 | MR | Zbl
[16] Greenhill A. G., The applications of elliptic functions, Macmillan and Co., London, 1892 | Zbl
[17] Griffiths P., “The legacy of Abel in algebraic geometry”, The legacy of Niels Henrik Abel, eds. O. A. Laudal, R. Piene, Springer, Berlin, 2004, 179–205 | DOI | MR | Zbl
[18] Hirota R., Kimura K., “Discretization of the Euler top”, J. Phys. Soc. Japan, 69:3 (2000), 627–630 | DOI | MR | Zbl
[19] Hone A. N. W., Ragnisco O., Zullo F., “Algebraic entropy for algebraic maps”, J. Phys. A: Math. Theor., 49:2 (2016), 02 | DOI | MR
[20] Jacobi C. G. J., “Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen”, J. reine angew. Math., 32 (1846), 220–227 | DOI | MR
[21] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR
[22] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37:35 (2004), 8495–8512 | DOI | MR | Zbl
[23] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31:9 (1998), 2241–2251 | DOI | MR | Zbl
[24] Kuznetsov V., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: A geometric approach”, J. Geom. Phys., 44:1 (2002), 1–40 | DOI | MR | Zbl
[25] Lagrange J.-L., Théorie des fonctions analytiques, Bachelier, Imprimeur-Librarie, Paris, 1847
[26] Petrera M., Pfadler A., Suris Yu. B., “On integrability of Hirota–Kimura type discretizations”, Regul. Chaotic Dyn., 16:3–4 (2011), 245–289 | DOI | MR | Zbl
[27] Ragnisco O., Zullo F., “Bäcklund transformations for the Kirchhoff top”, SIGMA. Symmetry Integrability Geom. Methods Appl., 7 (2011), 001 | MR | Zbl
[28] Richelot F. J., “Ueber die Integration eines merkwürdigen Systems von Differentialgleichungen”, J. reine angew. Math., 23 (1842), 354–369 | DOI | MR | Zbl
[29] Rosenlicht M., “Equivalence relations on algebraic curves”, Ann. Math. Ser. 2, 56 (1952), 169–191 | DOI | MR | Zbl
[30] Sklyanin E. K., “Bäcklund transformations and Baxter's $Q$-operator”, Integrable systems: From classical to quantum, Proc. 38th sess. Sém. math. supér. (Montréal, 1999), CRM Proc. Lect. Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 227–250 | MR | Zbl
[31] Sozonov A. P., Tsyganov A. V., “O preobrazovaniyakh Beklunda, svyazyvayuschikh razlichnye uravneniya Gamiltona–Yakobi”, TMF, 183:3 (2015), 372–387 | DOI | MR | Zbl
[32] Stäckel P., Ueber die Integration der Hamilton–Jacobi'schen Differentialgleichung mittels Separation der Variabeln, Habilitationsschr., Halle, 1891
[33] Stäckel P., “Ueber die Integration der Hamilton'schen Differentialgleichung mittelst Separation der Variabeln”, Math. Ann., 49:1 (1897), 145–147 | DOI | MR
[34] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Prog. Math., 219, Birkhäuser, Basel, 2003 | MR | Zbl
[35] Tsiganov A. V., “On a family of integrable systems on $\mathcal S^2$ with a cubic integral of motion”, J. Phys. A: Math. Gen., 38:4 (2005), 921–927 | DOI | MR | Zbl
[36] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44:10 (2011), 105203 | DOI | MR | Zbl
[37] Tsiganov A. V., “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR | Zbl
[38] Tsiganov A. V., “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR | Zbl
[39] Tsiganov A. V., “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems”, Phys. Lett. A, 379:45–46 (2015), 2903–2907 | DOI | MR | Zbl
[40] Tsiganov A. V., “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl
[41] Tsiganov A. V., Khudobakhshov V. A., “Integrable systems on the sphere associated with genus three algebraic curves”, Regul. Chaotic Dyn., 16:3–4 (2011), 396–414 | DOI | MR | Zbl
[42] Vershilov A. V., Tsiganov A. V., “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A: Math. Theor., 42:10 (2009), 105203 | DOI | MR | Zbl
[43] Weierstrass K., “Über die geodätischen Linien auf dem dreiaxigen Ellipsoid”, Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 257–266
[44] Weierstrass K., “Bemerkungen über die Integration der hyperelliptischen Differential-Gleichungen”, Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 267–273
[45] Wojciechowski S., “The analogue of the Bäcklund transformation for integrable many-body systems”, J. Phys. A: Math. Gen., 15:12 (1982), 653–657 | DOI | MR | Zbl