Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 261-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an algorithm for constructing auto-Bäcklund transformations for finite-dimensional Hamiltonian systems whose integration reduces to the inversion of the Abel map. In this case, using equations of motion, one can construct Abel differential equations and identify the sought Bäcklund transformation with the well-known equivalence relation between the roots of the Abel polynomial. As examples, we construct Bäcklund transformations for the Lagrange top, Kowalevski top, and Goryachev–Chaplygin top, which are related to hyperelliptic curves of genera 1 and 2, as well as for the Goryachev and Dullin–Matveev systems, which are related to trigonal curves in the plane.
@article{TRSPY_2016_295_a15,
     author = {A. V. Tsiganov},
     title = {Abel's theorem and {B\"acklund} transformations for the {Hamilton--Jacobi} equations},
     journal = {Informatics and Automation},
     pages = {261--291},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
JO  - Informatics and Automation
PY  - 2016
SP  - 261
EP  - 291
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/
LA  - ru
ID  - TRSPY_2016_295_a15
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
%J Informatics and Automation
%D 2016
%P 261-291
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/
%G ru
%F TRSPY_2016_295_a15
A. V. Tsiganov. Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 261-291. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a15/

[1] Abel N. H., “Mémoire sur une propriété générale d'une classe très-étendue de fonctions transcendantes”, Oeuvres complètes, v. 1, Grondahl Son, Christiania, 1881, 145–211

[2] Baker H. F., Abel's theorem and the allied theory, including the theory of the theta functions, Univ. Press, Cambridge, 1897 | Zbl

[3] Bizayev I. A., Tsiganov A. V., “On the Routh sphere problem”, J. Phys. A: Math. Theor., 46:8 (2013), 085202 | DOI | MR

[4] Bobenko A. I., Suris Yu. B., Discrete differential geometry. Integrable structure, Grad. Stud. Math., 98, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl

[5] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, In-t kompyut. issled., M.–Izhevsk, 2005 | MR

[6] Borisov A. V., Mamaev I. S., Tsyganov A. V., “Negolonomnaya dinamika i puassonova geometriya”, UMN, 69:3 (2014), 87–144 | DOI | MR | Zbl

[7] Braden H. W., Enolski V. Z., Fedorov Yu. N., “Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion”, Nonlinearity, 26:7 (2013), 1865–1889 | DOI | MR | Zbl

[8] Chaplygin S. A., “Novoe chastnoe rѣshenie zadachi o vraschenii tyazhelago tverdago tѣla vokrug' nepodvizhnoi tochki”, Tr. otd. fiz. nauk O-va lyubitelei estestvoznaniya, 12:1 (1904), 1–4

[9] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Teubner, Leipzig, 1866

[10] Dubrovin B. A., Rimanovy poverkhnosti i nelineinye uravneniya, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2001

[11] Dullin H. R., Matveev V. S., “A new integrable system on the sphere”, Math. Res. Lett., 11 (2004), 715–722 | DOI | MR | Zbl

[12] Eiler L., Integralnoe ischislenie, Gostekhizdat, M., 1956

[13] Goryachev D. N., “O dvizhenii tyazhelago tverdago tѣla vokrug' nepodvizhnoi tochki v' sluchaѣ$A=B=4C$”, Mat. sb., 21:3 (1900), 431–438 | Zbl

[14] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshav. univ. izv., 1916, no. 3, 3–15

[15] Green M. L., Griffiths P. A., “Abel's differential equations”, Houston J. Math., 28:2 (2002), 329–351 | MR | Zbl

[16] Greenhill A. G., The applications of elliptic functions, Macmillan and Co., London, 1892 | Zbl

[17] Griffiths P., “The legacy of Abel in algebraic geometry”, The legacy of Niels Henrik Abel, eds. O. A. Laudal, R. Piene, Springer, Berlin, 2004, 179–205 | DOI | MR | Zbl

[18] Hirota R., Kimura K., “Discretization of the Euler top”, J. Phys. Soc. Japan, 69:3 (2000), 627–630 | DOI | MR | Zbl

[19] Hone A. N. W., Ragnisco O., Zullo F., “Algebraic entropy for algebraic maps”, J. Phys. A: Math. Theor., 49:2 (2016), 02 | DOI | MR

[20] Jacobi C. G. J., “Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen”, J. reine angew. Math., 32 (1846), 220–227 | DOI | MR

[21] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR

[22] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37:35 (2004), 8495–8512 | DOI | MR | Zbl

[23] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31:9 (1998), 2241–2251 | DOI | MR | Zbl

[24] Kuznetsov V., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: A geometric approach”, J. Geom. Phys., 44:1 (2002), 1–40 | DOI | MR | Zbl

[25] Lagrange J.-L., Théorie des fonctions analytiques, Bachelier, Imprimeur-Librarie, Paris, 1847

[26] Petrera M., Pfadler A., Suris Yu. B., “On integrability of Hirota–Kimura type discretizations”, Regul. Chaotic Dyn., 16:3–4 (2011), 245–289 | DOI | MR | Zbl

[27] Ragnisco O., Zullo F., “Bäcklund transformations for the Kirchhoff top”, SIGMA. Symmetry Integrability Geom. Methods Appl., 7 (2011), 001 | MR | Zbl

[28] Richelot F. J., “Ueber die Integration eines merkwürdigen Systems von Differentialgleichungen”, J. reine angew. Math., 23 (1842), 354–369 | DOI | MR | Zbl

[29] Rosenlicht M., “Equivalence relations on algebraic curves”, Ann. Math. Ser. 2, 56 (1952), 169–191 | DOI | MR | Zbl

[30] Sklyanin E. K., “Bäcklund transformations and Baxter's $Q$-operator”, Integrable systems: From classical to quantum, Proc. 38th sess. Sém. math. supér. (Montréal, 1999), CRM Proc. Lect. Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 227–250 | MR | Zbl

[31] Sozonov A. P., Tsyganov A. V., “O preobrazovaniyakh Beklunda, svyazyvayuschikh razlichnye uravneniya Gamiltona–Yakobi”, TMF, 183:3 (2015), 372–387 | DOI | MR | Zbl

[32] Stäckel P., Ueber die Integration der Hamilton–Jacobi'schen Differentialgleichung mittels Separation der Variabeln, Habilitationsschr., Halle, 1891

[33] Stäckel P., “Ueber die Integration der Hamilton'schen Differentialgleichung mittelst Separation der Variabeln”, Math. Ann., 49:1 (1897), 145–147 | DOI | MR

[34] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Prog. Math., 219, Birkhäuser, Basel, 2003 | MR | Zbl

[35] Tsiganov A. V., “On a family of integrable systems on $\mathcal S^2$ with a cubic integral of motion”, J. Phys. A: Math. Gen., 38:4 (2005), 921–927 | DOI | MR | Zbl

[36] Tsiganov A. V., “On natural Poisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44:10 (2011), 105203 | DOI | MR | Zbl

[37] Tsiganov A. V., “Simultaneous separation for the Neumann and Chaplygin systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93 | DOI | MR | Zbl

[38] Tsiganov A. V., “On the Chaplygin system on the sphere with velocity dependent potential”, J. Geom. Phys., 92 (2015), 94–99 | DOI | MR | Zbl

[39] Tsiganov A. V., “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems”, Phys. Lett. A, 379:45–46 (2015), 2903–2907 | DOI | MR | Zbl

[40] Tsiganov A. V., “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl

[41] Tsiganov A. V., Khudobakhshov V. A., “Integrable systems on the sphere associated with genus three algebraic curves”, Regul. Chaotic Dyn., 16:3–4 (2011), 396–414 | DOI | MR | Zbl

[42] Vershilov A. V., Tsiganov A. V., “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A: Math. Theor., 42:10 (2009), 105203 | DOI | MR | Zbl

[43] Weierstrass K., “Über die geodätischen Linien auf dem dreiaxigen Ellipsoid”, Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 257–266

[44] Weierstrass K., “Bemerkungen über die Integration der hyperelliptischen Differential-Gleichungen”, Mathematische Werke, v. 1, Mayer Müller, Berlin, 1894, 267–273

[45] Wojciechowski S., “The analogue of the Bäcklund transformation for integrable many-body systems”, J. Phys. A: Math. Gen., 15:12 (1982), 653–657 | DOI | MR | Zbl