On fourth-degree polynomial integrals of the Birkhoff billiard
Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 34-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Birkhoff billiard in a convex domain with a smooth boundary $\gamma$. We show that if this dynamical system has an integral which is polynomial in velocities of degree $4$ and is independent with the velocity norm, then $\gamma$ is an ellipse.
@article{TRSPY_2016_295_a1,
     author = {M. Bialy and A. E. Mironov},
     title = {On fourth-degree polynomial integrals of the {Birkhoff} billiard},
     journal = {Informatics and Automation},
     pages = {34--40},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a1/}
}
TY  - JOUR
AU  - M. Bialy
AU  - A. E. Mironov
TI  - On fourth-degree polynomial integrals of the Birkhoff billiard
JO  - Informatics and Automation
PY  - 2016
SP  - 34
EP  - 40
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a1/
LA  - ru
ID  - TRSPY_2016_295_a1
ER  - 
%0 Journal Article
%A M. Bialy
%A A. E. Mironov
%T On fourth-degree polynomial integrals of the Birkhoff billiard
%J Informatics and Automation
%D 2016
%P 34-40
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a1/
%G ru
%F TRSPY_2016_295_a1
M. Bialy; A. E. Mironov. On fourth-degree polynomial integrals of the Birkhoff billiard. Informatics and Automation, Modern problems of mechanics, Tome 295 (2016), pp. 34-40. http://geodesic.mathdoc.fr/item/TRSPY_2016_295_a1/