Plane rational quartics and K3 surfaces
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 105-140

Voir la notice de l'article provenant de la source Math-Net.Ru

We study actions of the symmetric group $\mathbb S_4$ on K3 surfaces $X$ that satisfy the following condition: there exists an equivariant birational contraction $\overline r\colon X\to\overline X$ to a K3 surface $\overline X$ with ADE singularities such that the quotient space $\overline X/\mathbb S_4$ is isomorphic to $\mathbb P^2$. We prove that up to smooth equivariant deformations there exist exactly 15 such actions of the group $\mathbb S_4$ on K3 surfaces, and that these actions are realized as actions of the Galois groups on the Galoisations $\overline X$ of the dualizing coverings of the plane which are associated with plane rational quartics without $A_4$, $A_6$, and $E_6$ singularities as their singular points.
@article{TRSPY_2016_294_a6,
     author = {Vik. S. Kulikov},
     title = {Plane rational quartics and {K3} surfaces},
     journal = {Informatics and Automation},
     pages = {105--140},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Plane rational quartics and K3 surfaces
JO  - Informatics and Automation
PY  - 2016
SP  - 105
EP  - 140
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/
LA  - ru
ID  - TRSPY_2016_294_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Plane rational quartics and K3 surfaces
%J Informatics and Automation
%D 2016
%P 105-140
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/
%G ru
%F TRSPY_2016_294_a6
Vik. S. Kulikov. Plane rational quartics and K3 surfaces. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 105-140. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/