Plane rational quartics and K3 surfaces
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 105-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study actions of the symmetric group $\mathbb S_4$ on K3 surfaces $X$ that satisfy the following condition: there exists an equivariant birational contraction $\overline r\colon X\to\overline X$ to a K3 surface $\overline X$ with ADE singularities such that the quotient space $\overline X/\mathbb S_4$ is isomorphic to $\mathbb P^2$. We prove that up to smooth equivariant deformations there exist exactly 15 such actions of the group $\mathbb S_4$ on K3 surfaces, and that these actions are realized as actions of the Galois groups on the Galoisations $\overline X$ of the dualizing coverings of the plane which are associated with plane rational quartics without $A_4$, $A_6$, and $E_6$ singularities as their singular points.
@article{TRSPY_2016_294_a6,
     author = {Vik. S. Kulikov},
     title = {Plane rational quartics and {K3} surfaces},
     journal = {Informatics and Automation},
     pages = {105--140},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Plane rational quartics and K3 surfaces
JO  - Informatics and Automation
PY  - 2016
SP  - 105
EP  - 140
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/
LA  - ru
ID  - TRSPY_2016_294_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Plane rational quartics and K3 surfaces
%J Informatics and Automation
%D 2016
%P 105-140
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/
%G ru
%F TRSPY_2016_294_a6
Vik. S. Kulikov. Plane rational quartics and K3 surfaces. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 105-140. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a6/

[1] Ballico E., Hefez A., “On the Galois group associated to a generically étale morphism”, Commun. Algebra, 14:5 (1986), 899–909 | DOI | MR | Zbl

[2] Cartan H., “Quotient d'un espace analytique par un groupe d'automorphismes”, Algebraic geometry and topology, A symposium in honor of S. Lefschetz (Princeton, 1954), Princeton Univ. Press, Princeton, NJ, 1957, 90–102 | MR | Zbl

[3] Catanese F., “Automorphisms of rational double points and moduli spaces of surfaces of general type”, Compos. math., 61:1 (1987), 81–102 | MR | Zbl

[4] Kulikov Vik. S., “Krivye Gurvitsa”, UMN, 62:6 (2007), 3–86 | DOI | MR | Zbl

[5] Kulikov Vik. S., A remark on classical Pluecker's formulae, E-print, 2011, arXiv: 1101.5042[math.AG]

[6] Kulikov Vik. S., “Dualiziruyuschie nakrytiya ploskosti”, Izv. RAN. Ser. mat., 79:5 (2015), 163–192 | DOI | MR

[7] Mamford D., “Topologiya normalnykh osobennostei algebraicheskoi poverkhnosti i kriterii prostoty”, Matematika: Sb. per., 10:6 (1966), 3–24 | MR

[8] Nakano S., “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 6:3 (1971), 483–502 | DOI | MR | Zbl

[9] Nikulin V. V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38, 1979, 75–137 | MR | Zbl

[10] Nikulin V. V., “Vyrozhdeniya kelerovykh K3-poverkhnostei s konechnymi simplekticheskimi gruppami avtomorfizmov”, Izv. RAN. Ser. Mat., 79:4 (2015), 103–158 | DOI | MR | Zbl

[11] Shafarevich I. R., Averbukh B. G., Vainberg Yu. R., Zhizhchenko A. B., Manin Yu. I., Moishezon B. G., Tyurina G. N., Tyurin A. N., Algebraicheskie poverkhnosti, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl

[12] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Can. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[13] Stein K., “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl

[14] Wahl J. M., “Equisingular deformations of plane algebroid curves”, Trans. Amer. Math. Soc., 193 (1974), 143–170 | DOI | MR | Zbl

[15] Wall C. T. C., “Duality of singular plane curves”, J. London Math. Soc. Ser. 2, 50:2 (1994), 265–275 | DOI | MR | Zbl

[16] Wall C. T. C., “Geometry of quartic curves”, Math. Proc. Cambridge Philos. Soc., 117:3 (1995), 415–423 | DOI | MR | Zbl

[17] Whitcher U., “Symplectic automorphisms and Picard group of a K3 surface”, Commun. Algebra, 39:4 (2011), 1427–1440 | DOI | MR | Zbl

[18] Xiao G., “Galois covers between K3 surfaces”, Ann. Inst. Fourier, 46:1 (1996), 73–88 | DOI | MR | Zbl

[19] Zariski O., “Studies in equisingularity. I: Equivalent singularities of plane algebroid curves”, Amer. J. Math., 87 (1965), 507–536 | DOI | MR | Zbl

[20] Zariski O., “Studies in equisingularity. II: Equisingularity in codimension 1 (and characteristic zero)”, Amer. J. Math., 87 (1965), 972–1006 | DOI | MR | Zbl