On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 248-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of maximizing the probability of transition from a given initial state to a given final state for an $n$-level quantum system using nonselective quantum measurements. We find an estimate from below for the maximum of the transition probability for any fixed number of measurements and find the measured observables on which this estimate is attained.
@article{TRSPY_2016_294_a14,
     author = {Alexander N. Pechen and Nikolay B. Il'in},
     title = {On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements},
     journal = {Informatics and Automation},
     pages = {248--255},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/}
}
TY  - JOUR
AU  - Alexander N. Pechen
AU  - Nikolay B. Il'in
TI  - On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
JO  - Informatics and Automation
PY  - 2016
SP  - 248
EP  - 255
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/
LA  - ru
ID  - TRSPY_2016_294_a14
ER  - 
%0 Journal Article
%A Alexander N. Pechen
%A Nikolay B. Il'in
%T On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
%J Informatics and Automation
%D 2016
%P 248-255
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/
%G ru
%F TRSPY_2016_294_a14
Alexander N. Pechen; Nikolay B. Il'in. On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 248-255. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/