On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 248-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of maximizing the probability of transition from a given initial state to a given final state for an $n$-level quantum system using nonselective quantum measurements. We find an estimate from below for the maximum of the transition probability for any fixed number of measurements and find the measured observables on which this estimate is attained.
@article{TRSPY_2016_294_a14,
     author = {Alexander N. Pechen and Nikolay B. Il'in},
     title = {On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements},
     journal = {Informatics and Automation},
     pages = {248--255},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/}
}
TY  - JOUR
AU  - Alexander N. Pechen
AU  - Nikolay B. Il'in
TI  - On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
JO  - Informatics and Automation
PY  - 2016
SP  - 248
EP  - 255
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/
LA  - ru
ID  - TRSPY_2016_294_a14
ER  - 
%0 Journal Article
%A Alexander N. Pechen
%A Nikolay B. Il'in
%T On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements
%J Informatics and Automation
%D 2016
%P 248-255
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/
%G ru
%F TRSPY_2016_294_a14
Alexander N. Pechen; Nikolay B. Il'in. On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 248-255. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a14/

[1] Blok M. S., Bonato C., Markham M. L., Twitchen D. J., Dobrovitski V. V., Hanson R., “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback”, Nat. Phys., 10 (2014), 189–193 | DOI

[2] Campisi M., Talkner P., Hänggi P., “Influence of measurements on the statistics of work performed on a quantum system”, Phys. Rev. E, 83:4 (2011), 041114 | DOI

[3] Dominy J. M., Paz-Silva G. A., Rezakhani A. T., Lidar D. A., “Analysis of the quantum Zeno effect for quantum control and computation”, J. Phys. A: Math. Theor., 46:7 (2013), 075306 | DOI | MR | Zbl

[4] Fu S., Shi G., Proutiere A., James M. R., “Feedback policies for measurement-based quantum state manipulation”, Phys. Rev. A, 90:6 (2014), 062328 | DOI

[5] Hentschel A., Sanders B. C., “Machine learning for precise quantum measurement”, Phys. Rev. Lett., 104:6 (2010), 063603 | DOI

[6] Kakuyanagi K., Baba T., Matsuzaki Y., Nakano H., Saito S., Semba K., “Observation of quantum Zeno effect in a superconducting flux qubit”, New J. Phys., 17:6 (2015), 063035 | DOI

[7] Lucas F., Hornberger K., “Incoherent control of the retinal isomerization in rhodopsin”, Phys. Rev. Lett., 113:5 (2014), 058301 | DOI

[8] Paz-Silva G. A., Rezakhani A. T., Dominy J. M., Lidar D. A., “Zeno effect for quantum computation and control”, Phys. Rev. Lett., 108:8 (2012), 080501 | DOI

[9] Pechen A. N., Ilin N. B., “Kogerentnoe upravlenie kubitom svobodno ot lovushek”, Tr. MIAN, 285, 2014, 244–252 | DOI | MR | Zbl

[10] Pechen A. N., Ilin N. B., “Suschestvovanie lovushek v zadache maksimizatsii srednikh znachenii nablyudaemykh kubita na malykh vremenakh”, Tr. MIAN, 289, 2015, 227–234 | DOI | MR | Zbl

[11] Pechen A. N., Ilin N. B., “O kriticheskikh tochkakh tselevogo funktsionala v zadache maksimizatsii nablyudaemykh kubita”, UMN, 70:4 (2015), 211–212 | DOI | MR | Zbl

[12] Pechen A., Il'in N., Shuang F., Rabitz H., “Quantum control by von Neumann measurements”, Phys. Rev. A, 74:5 (2006), 052102 | DOI

[13] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 | DOI

[14] Pedersen M. K., Sørensen J. J. W. H., Tichy M. C., Sherson J. F., “Many-body state engineering using measurements and fixed unitary dynamics”, New J. Phys., 16:11 (2014), 113038 | DOI

[15] Shuang F., Pechen A., Ho T.-S., Rabitz H., “Observation-assisted optimal control of quantum dynamics”, J. Chem. Phys., 126:13 (2007), 134303 | DOI

[16] Shuang F., Zhou M., Pechen A., Wu R., Shir O. M., Rabitz H., “Control of quantum dynamics by optimized measurements”, Phys. Rev. A, 78:6 (2008), 063422 | DOI

[17] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI

[18] Wiseman H. W., “Quantum control: Squinting at quantum systems”, Nature, 470 (2011), 178–179 | DOI