Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_294_a13, author = {V. P. Pavlov and V. M. Sergeev}, title = {Fluid dynamics and thermodynamics as a~unified field theory}, journal = {Informatics and Automation}, pages = {237--247}, publisher = {mathdoc}, volume = {294}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/} }
V. P. Pavlov; V. M. Sergeev. Fluid dynamics and thermodynamics as a~unified field theory. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 237-247. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/
[1] Arnold V. I., “Gamiltonovost uravnenii Eilera dinamiki tverdogo tela i idealnoi zhidkosti”, UMN, 24:3 (1969), 225–226 | MR | Zbl
[2] Kozlov V. V., Obschaya teoriya vikhrei, 2-e izd., ispr. i dop., In-t kompyut. issled., M.–Izhevsk, 2013
[3] Bogoyavlenskij O. I., Reynolds A. P., “Criteria for existence of a Hamiltonian structure”, Regul. Chaotic Dyn., 15:4–5 (2010), 431–439 | DOI | MR | Zbl
[4] Kozlov V. V., “The dynamics of systems with servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[5] Pavlov V. P., Sergeev V. M., “Dinamicheskii printsip”, TMF, 153:1 (2007), 18–28 | DOI | MR | Zbl
[6] Frønsdal C., “Heat and gravitation: The action principle”, Entropy, 16:3 (2014), 1515–1546 | DOI
[7] Fetter A. L., Walecka J. D., Theoretical mechanics of particles and continua, McGraw-Hill, New York, 1980 | MR | Zbl
[8] Pavlov V. P., Starinets A. O., “Geometriya fazovogo prostranstva sistem so svyazyami”, TMF, 105:3 (1995), 429–437 | MR | Zbl
[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[10] Kozlov V. V., “Vikhrevaya teoriya adiabaticheskikh ravnovesnykh protsessov”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2000, no. 2, 35–40 | Zbl
[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986 | MR
[12] Pavlov V. P., “Reduktsiya na poverkhnost svyazei vtorogo roda”, TMF, 132:3 (2002), 399–407 | DOI | MR | Zbl
[13] Rashevskii P. K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947