Fluid dynamics and thermodynamics as a~unified field theory
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 237-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of consistency of equations of continuum dynamics (using the Euler equations and the continuity equation as examples) and thermodynamic equations of state (for the specific free energy, entropy, and volume). We propose a variant of the Hamiltonian formulation of a model that combines the fluid dynamics of a potential flow of a compressible fluid or gas and local equilibrium thermodynamics into a unified field theory. Thermodynamic equations of state appear in this model as second-class constraint equations. As a consistency condition, there arises another second-class constraint requiring that the product of density and temperature should be independent of time. The model provides an in-principle possibility of finding the time dependence of the specific entropy of the arising dynamical system.
@article{TRSPY_2016_294_a13,
     author = {V. P. Pavlov and V. M. Sergeev},
     title = {Fluid dynamics and thermodynamics as a~unified field theory},
     journal = {Informatics and Automation},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/}
}
TY  - JOUR
AU  - V. P. Pavlov
AU  - V. M. Sergeev
TI  - Fluid dynamics and thermodynamics as a~unified field theory
JO  - Informatics and Automation
PY  - 2016
SP  - 237
EP  - 247
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/
LA  - ru
ID  - TRSPY_2016_294_a13
ER  - 
%0 Journal Article
%A V. P. Pavlov
%A V. M. Sergeev
%T Fluid dynamics and thermodynamics as a~unified field theory
%J Informatics and Automation
%D 2016
%P 237-247
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/
%G ru
%F TRSPY_2016_294_a13
V. P. Pavlov; V. M. Sergeev. Fluid dynamics and thermodynamics as a~unified field theory. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 237-247. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a13/

[1] Arnold V. I., “Gamiltonovost uravnenii Eilera dinamiki tverdogo tela i idealnoi zhidkosti”, UMN, 24:3 (1969), 225–226 | MR | Zbl

[2] Kozlov V. V., Obschaya teoriya vikhrei, 2-e izd., ispr. i dop., In-t kompyut. issled., M.–Izhevsk, 2013

[3] Bogoyavlenskij O. I., Reynolds A. P., “Criteria for existence of a Hamiltonian structure”, Regul. Chaotic Dyn., 15:4–5 (2010), 431–439 | DOI | MR | Zbl

[4] Kozlov V. V., “The dynamics of systems with servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl

[5] Pavlov V. P., Sergeev V. M., “Dinamicheskii printsip”, TMF, 153:1 (2007), 18–28 | DOI | MR | Zbl

[6] Frønsdal C., “Heat and gravitation: The action principle”, Entropy, 16:3 (2014), 1515–1546 | DOI

[7] Fetter A. L., Walecka J. D., Theoretical mechanics of particles and continua, McGraw-Hill, New York, 1980 | MR | Zbl

[8] Pavlov V. P., Starinets A. O., “Geometriya fazovogo prostranstva sistem so svyazyami”, TMF, 105:3 (1995), 429–437 | MR | Zbl

[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[10] Kozlov V. V., “Vikhrevaya teoriya adiabaticheskikh ravnovesnykh protsessov”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2000, no. 2, 35–40 | Zbl

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1986 | MR

[12] Pavlov V. P., “Reduktsiya na poverkhnost svyazei vtorogo roda”, TMF, 132:3 (2002), 399–407 | DOI | MR | Zbl

[13] Rashevskii P. K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947