Uniqueness theorem for locally antipodal Delaunay sets
Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 230-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given $2R$-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose $2R$-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.
@article{TRSPY_2016_294_a12,
     author = {N. P. Dolbilin and A. N. Magazinov},
     title = {Uniqueness theorem for locally antipodal {Delaunay} sets},
     journal = {Informatics and Automation},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {294},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a12/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - A. N. Magazinov
TI  - Uniqueness theorem for locally antipodal Delaunay sets
JO  - Informatics and Automation
PY  - 2016
SP  - 230
EP  - 236
VL  - 294
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a12/
LA  - ru
ID  - TRSPY_2016_294_a12
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A A. N. Magazinov
%T Uniqueness theorem for locally antipodal Delaunay sets
%J Informatics and Automation
%D 2016
%P 230-236
%V 294
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a12/
%G ru
%F TRSPY_2016_294_a12
N. P. Dolbilin; A. N. Magazinov. Uniqueness theorem for locally antipodal Delaunay sets. Informatics and Automation, Modern problems of mathematics, mechanics, and mathematical physics. II, Tome 294 (2016), pp. 230-236. http://geodesic.mathdoc.fr/item/TRSPY_2016_294_a12/

[1] Fedorov E. S., Nachala ucheniya o figurakh, S.-Peterburg, 1885; Классики науки, 2-е изд., Изд-во АН СССР, М., 1953

[2] Sohncke L., “Die regelmässigen ebenen Punktsysteme von unbegrenzter Ausdehnung”, J. reine angew. Math., 77 (1874), 47–101 | MR

[3] Schoenflies A., Krystallsysteme und Krystallstructur, B. G. Teubner, Leipzig, 1891 | Zbl

[4] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume (Erste Abh.)”, Math. Ann., 70:3 (1911), 297–336 | DOI | MR | Zbl

[5] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abh.): Die Gruppen mit einem endlichen Fundamentalbereich”, Math. Ann., 72:3 (1912), 400–412 | DOI | MR | Zbl

[6] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 3 (1937), 16–62

[7] Delone B. N., Dolbilin N. P., Shtogrin M. I., Galiulin R. V., “Lokalnyi kriterii pravilnosti sistemy tochek”, DAN SSSR, 227:1 (1976), 19–21 | MR | Zbl

[8] Dolbilin N. P., “Kriterii kristalla i lokalno antipodalnye mnozhestva Delone”, Vestn. Chelyab. gos. un-ta, 2015, no. 3, 6–17

[9] Dolbilin N. P., Magazinov A. N., “Lokalno antipodalnye mnozhestva Delone”, UMN, 70:5 (2015), 179–180 | DOI | MR | Zbl

[10] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, v. 7, Fizika sploshnykh sred, 3-e izd., URSS, M., 2004