An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general $C$-fractions is extended to continued fractions of a more general form.
@article{TRSPY_2016_293_a8,
     author = {V. I. Buslaev},
     title = {An analog of {Gonchar's} theorem for the $m$-point version of {Leighton's} conjecture},
     journal = {Informatics and Automation},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
JO  - Informatics and Automation
PY  - 2016
SP  - 133
EP  - 145
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/
LA  - ru
ID  - TRSPY_2016_293_a8
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
%J Informatics and Automation
%D 2016
%P 133-145
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/
%G ru
%F TRSPY_2016_293_a8
V. I. Buslaev. An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/

[1] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39

[2] Wall H.S., Analytic theory of continued fractions, D. van Nostrand, New York, 1948 | MR | Zbl

[3] Scott W.T., Wall H.S., “Continued fraction expansions for arbitrary power series”, Ann. Math. Ser. 2., 41:2 (1940), 328–349 | DOI | MR

[4] Thron W.J., “Singular points of functions defined by C-fractions”, Proc. Natl. Acad. Sci. USA, 36 (1950), 51–54 | DOI | MR | Zbl

[5] Dzhouns U., Tron V., Nepreryvnye drobi: Analiticheskaya teoriya i ee prilozheniya, Mir, M., 1985 | MR

[6] Gonchar A.A., “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Mat. sb., 197:10 (2006), 3–14 | DOI | MR | Zbl

[7] Pólya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss., 1929, 55–62 | Zbl

[8] Buslaev V.I., “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. math., 39:1 (2013), 1–27 | DOI | MR | Zbl

[9] Buslaev V.I., “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Mat. sb., 206:12 (2015), 55–69 | DOI | MR

[10] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl

[11] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[12] Buslaev V.I., Suetin S.P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290 (2015), 272–279 | Zbl

[13] Suetin S.P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR

[14] Buslaev V.I., Suetin S.P., “On the existence of compacta of minimal capacity in the problems of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 2016 (to appear) | MR

[15] Buslaev V.I., “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Mat. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[16] Buslaev V.I., “Emkost kompakta v pole logarifmicheskogo potentsiala”, Tr. MIAN, 290 (2015), 254–271 | Zbl