Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_293_a8, author = {V. I. Buslaev}, title = {An analog of {Gonchar's} theorem for the $m$-point version of {Leighton's} conjecture}, journal = {Informatics and Automation}, pages = {133--145}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/} }
V. I. Buslaev. An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/
[1] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39
[2] Wall H.S., Analytic theory of continued fractions, D. van Nostrand, New York, 1948 | MR | Zbl
[3] Scott W.T., Wall H.S., “Continued fraction expansions for arbitrary power series”, Ann. Math. Ser. 2., 41:2 (1940), 328–349 | DOI | MR
[4] Thron W.J., “Singular points of functions defined by C-fractions”, Proc. Natl. Acad. Sci. USA, 36 (1950), 51–54 | DOI | MR | Zbl
[5] Dzhouns U., Tron V., Nepreryvnye drobi: Analiticheskaya teoriya i ee prilozheniya, Mir, M., 1985 | MR
[6] Gonchar A.A., “Ob osobykh tochkakh meromorfnykh funktsii, zadannykh svoim razlozheniem v $C$-drob”, Mat. sb., 197:10 (2006), 3–14 | DOI | MR | Zbl
[7] Pólya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss., 1929, 55–62 | Zbl
[8] Buslaev V.I., “Otsenka emkosti mnozhestva osobennostei funktsii, zadannykh svoim razlozheniem v nepreryvnuyu drob”, Anal. math., 39:1 (2013), 1–27 | DOI | MR | Zbl
[9] Buslaev V.I., “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Mat. sb., 206:12 (2015), 55–69 | DOI | MR
[10] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl
[11] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[12] Buslaev V.I., Suetin S.P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290 (2015), 272–279 | Zbl
[13] Suetin S.P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR
[14] Buslaev V.I., Suetin S.P., “On the existence of compacta of minimal capacity in the problems of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 2016 (to appear) | MR
[15] Buslaev V.I., “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Mat. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[16] Buslaev V.I., “Emkost kompakta v pole logarifmicheskogo potentsiala”, Tr. MIAN, 290 (2015), 254–271 | Zbl