An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Gonchar's theorem on the validity of Leighton's conjecture for arbitrary nondecreasing sequences of exponents of general $C$-fractions is extended to continued fractions of a more general form.
@article{TRSPY_2016_293_a8,
     author = {V. I. Buslaev},
     title = {An analog of {Gonchar's} theorem for the $m$-point version of {Leighton's} conjecture},
     journal = {Informatics and Automation},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
JO  - Informatics and Automation
PY  - 2016
SP  - 133
EP  - 145
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/
LA  - ru
ID  - TRSPY_2016_293_a8
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture
%J Informatics and Automation
%D 2016
%P 133-145
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/
%G ru
%F TRSPY_2016_293_a8
V. I. Buslaev. An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a8/