Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1$, $1\theta+\infty$
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 83-104

Voir la notice de l'article provenant de la source Math-Net.Ru

For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol'skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
@article{TRSPY_2016_293_a5,
     author = {A. U. Bimendina and E. S. Smailov},
     title = {Fourier--Price coefficients of class {GM} and best approximations of functions in the {Lorentz} space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$},
     journal = {Informatics and Automation},
     pages = {83--104},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/}
}
TY  - JOUR
AU  - A. U. Bimendina
AU  - E. S. Smailov
TI  - Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1
JO  - Informatics and Automation
PY  - 2016
SP  - 83
EP  - 104
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/
LA  - ru
ID  - TRSPY_2016_293_a5
ER  - 
%0 Journal Article
%A A. U. Bimendina
%A E. S. Smailov
%T Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1
%J Informatics and Automation
%D 2016
%P 83-104
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/
%G ru
%F TRSPY_2016_293_a5
A. U. Bimendina; E. S. Smailov. Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1