Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_293_a5, author = {A. U. Bimendina and E. S. Smailov}, title = {Fourier--Price coefficients of class {GM} and best approximations of functions in the {Lorentz} space $L_{p\theta}[0,1)$, $1<p<+\infty$, $1<\theta<+\infty$}, journal = {Informatics and Automation}, pages = {83--104}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/} }
TY - JOUR AU - A. U. Bimendina AU - E. S. Smailov TI - Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1 JO - Informatics and Automation PY - 2016 SP - 83 EP - 104 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/ LA - ru ID - TRSPY_2016_293_a5 ER -
%0 Journal Article %A A. U. Bimendina %A E. S. Smailov %T Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1 %J Informatics and Automation %D 2016 %P 83-104 %V 293 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a5/ %G ru %F TRSPY_2016_293_a5
A. U. Bimendina; E. S. Smailov. Fourier--Price coefficients of class GM and best approximations of functions in the Lorentz space $L_{p\theta}[0,1)$, $1
[1] Agafonova N.Yu., “O nailuchshikh priblizheniyakh funktsii po multiplikativnym sistemam i svoistvakh ikh koeffitsientov Fure”, Anal. math., 33 (2007), 247–262 | DOI | MR | Zbl
[2] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[3] Bokaev N.A., Smailov E.S., Ryady Fure po multiplikativnym sistemam, Ucheb. posobie, KarGU, Karaganda, 1993
[4] Borisova E.A., O vlozhenii klassov funktsii, zadannykh posledovatelnostyami nailuchshikh priblizhenii po nekotorym ortonormirovannym sistemam, diss. ... kand. fiz.-mat. nauk, MGU, M., 1988
[5] Dyachenko M.I., “Teorema Khardi–Littlvuda dlya trigonometricheskikh ryadov s obobschenno-monotonnymi koeffitsientami”, Izv. vuzov. Matematika, 2008, no. 5, 38–47 | MR | Zbl
[6] Dyachenko M.I., Nursultanov E.D., “Teorema Khardi–Littlvuda dlya trigonometricheskikh ryadov s $\alpha $-monotonnymi koeffitsientami”, Mat. sb., 200:11 (2009), 45–60 | DOI | MR | Zbl
[7] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR
[8] Goldman M.L., “O vlozhenii prostranstv Nikolskogo–Besova s modulyami nepreryvnosti obschego vida v prostranstva Lorentsa”, DAN SSSR, 277:1 (1984), 20–24 | MR | Zbl
[9] Gulisashvili A.B., “Trigonometricheskie ryady s monotonno ubyvayuschimi koeffitsientami i funktsii raspredeleniya”, Mat. zametki, 10:1 (1971), 3–10 | Zbl
[10] Gulisashvili A.B., Rodin V.A., Semenov E.M., “Koeffitsienty Fure summiruemykh funktsii”, Mat. sb., 102:3 (1977), 362–371 | MR | Zbl
[11] Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948
[12] Kokilashvili V.M., “O priblizhenii periodicheskikh funktsii”, Tr. Tbil. mat. in-ta, 34 (1968), 51–81 | Zbl
[13] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44:1 (1958), 53–84
[14] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[15] Leindler L., “Best approximation and Fourier coefficients”, Anal. math., 31 (2005), 117–129 | DOI | MR | Zbl
[16] Nursultanov E.D., “Setevye prostranstva i neravenstva tipa Khardi–Littlvuda”, Mat. sb., 189:3 (1998), 83–102 | DOI | MR | Zbl
[17] Nursultanov E.D., “O koeffitsientakh kratnykh ryadov Fure iz $L_p$-prostranstv”, Izv. RAN. Ser. mat., 64:1 (2000), 95–122 | DOI | MR | Zbl
[18] Rodin V.A., “Teorema Khardi–Littlvuda dlya sinus-ryada v simmetrichnom prostranstve”, Mat. zametki, 20:2 (1976), 241–246 | MR | Zbl
[19] Rodin V.A., “O prinadlezhnosti summy kosinus-ryada s monotonnymi koeffitsientami simmetrichnomu prostranstvu”, Izv. vuzov. Matematika, 1979, no. 8, 60–64 | MR
[20] Sagher Y., “An application of interpolation theory to Fourier series”, Stud. math., 41:2 (1972), 169–181 | MR | Zbl
[21] Semenov E.M., “Interpolyatsiya lineinykh operatorov i otsenki koeffitsientov Fure”, DAN SSSR, 176:6 (1967), 1251–1254 | Zbl
[22] Smailov E.S., Bimendina A.U., “Teorema Khardi–Littlvuda dlya ryadov Fure–Praisa s kvazimonotonnymi koeffitsientami v prostranstve Lorentsa”, Vestn. Karagand. un-ta. Matematika, 2005, no. 2, 3–9
[23] Smailov E.S., Bimendina A.U., “O vlozhenii v prostranstvo Lorentsa”, Vestn. Karagand. un-ta. Matematika, 2008, no. 2, 75–83
[24] Smailov E.S., Suleimenova Z.R., “Teoremy vlozheniya dlya prostranstv Besova po multiplikativnym bazisam Praisa”, Tr. MIAN, 243 (2003), 313–319 | MR | Zbl
[25] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974
[26] Tazabekov S., Smailov E.S., Trigonometricheskie ryady Fure s kvazimonotonnymi koeffitsientami, Dep. v VINITI, No5255-V88, M., 1988
[27] Tikhonov S., “Trigonometric series with general monotone coefficients”, Math. Anal. Appl., 326 (2007), 721–735 | DOI | MR | Zbl
[28] Timan M.F., Tukhliev K., “Svoistva nekotorykh ortonormirovannykh sistem”, Izv. vuzov. Matematika, 1983, no. 9, 65–73 | MR | Zbl
[29] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Mat. sb., 81:1 (1970), 104–131 | Zbl
[30] Yong W.-S., “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Sos., 218 (1976), 311–320 | DOI | MR
[31] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR