Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_293_a4, author = {A. M. Bikchentaev}, title = {Convergence of integrable operators affiliated to a~finite {von~Neumann} algebra}, journal = {Informatics and Automation}, pages = {73--82}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/} }
A. M. Bikchentaev. Convergence of integrable operators affiliated to a~finite von~Neumann algebra. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/
[1] Segal I.E., “A non-commutative extension of abstract integration”, Ann. Math. Ser. 2, 57:3 (1953), 401–457 ; Sigal I.E., “Nekommutativnoe obobschenie abstraktnogo integrirovaniya”, Matematika: Sb. per., 6:1 (1962), 65–132 | DOI | MR | Zbl | MR
[2] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[3] Padmanabhan A.R., “Probabilistic aspects of von Neumann algebras”, J. Funct. Anal., 31:2 (1979), 139–149 | DOI | MR | Zbl
[4] Terp M., $L^p$-spaces associated with von Neumann algebras, Copenhagen Univ., Copenhagen, 1981
[5] Bikchentaev A.M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Mat. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl
[6] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau $-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[7] Pisier G., Xu Q., “Non-commutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl
[8] Bikchentaev A.M., “K teorii $\tau $-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Mat. zametki, 98:3 (2015), 337–348 | DOI | MR | Zbl
[9] Bikchentaev A.M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Tr. MIAN, 255 (2006), 41–54 | MR | Zbl
[10] Bikchentaev A.M., “O normalnykh $\tau $-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Mat. zametki, 96:3 (2014), 350–360 | DOI | MR | Zbl
[11] Bikchentaev A.M., “On noncommutative function spaces”, Selected papers in $K$-theory, AMS Transl. Ser. 2, 154, Amer. Math. Soc., Providence, RI, 1992, 179–187
[12] Brown L.G., Kosaki H., “Jensen's inequality in semi-finite von Neumann algebras”, J. Oper. Theory, 23:1 (1990), 3–19 | MR | Zbl
[13] Akemann C.A., Anderson J., Pedersen G.K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl
[14] Takesaki M., Theory of operator algebras, V. 1., 1, Springer, Berlin, 1979 | MR
[15] Glazman I.M., Lyubich Yu.I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR
[16] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR
[17] Bikchentaev A.M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matematika, 2012, no. 2, 86–91 | MR | Zbl
[18] Dodds P.G., Dodds T.K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl
[19] Pedersen G.K., Takesaki M., “The Radon–Nikodym theorem for von Neumann algebras”, Acta math., 130 (1973), 53–87 | DOI | MR | Zbl
[20] Bogachev V.I., Osnovy teorii mery, 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2006