Convergence of integrable operators affiliated to a~finite von~Neumann algebra
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Banach space $L_1(\mathcal M,\tau)$ of operators integrable with respect to a tracial state $\tau$ on a von Neumann algebra $\mathcal M$, convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal M,\tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal M,\tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X\in L_1(\mathcal M,\tau)$ are equivalent: (i) $\tau (X)=0$, and (ii) $\|I+zX\|_1\geq 1$ for all $z\in\mathbb C$. A. R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal M,\tau)$ is complemented. The convergence in $L_2(\mathcal M,\tau)$ of the imaginary components of some bounded sequences of operators from $\mathcal M$ is established. Corollaries on the convergence of dispersions are obtained.
@article{TRSPY_2016_293_a4,
     author = {A. M. Bikchentaev},
     title = {Convergence of integrable operators affiliated to a~finite {von~Neumann} algebra},
     journal = {Informatics and Automation},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Convergence of integrable operators affiliated to a~finite von~Neumann algebra
JO  - Informatics and Automation
PY  - 2016
SP  - 73
EP  - 82
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/
LA  - ru
ID  - TRSPY_2016_293_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Convergence of integrable operators affiliated to a~finite von~Neumann algebra
%J Informatics and Automation
%D 2016
%P 73-82
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/
%G ru
%F TRSPY_2016_293_a4
A. M. Bikchentaev. Convergence of integrable operators affiliated to a~finite von~Neumann algebra. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 73-82. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a4/

[1] Segal I.E., “A non-commutative extension of abstract integration”, Ann. Math. Ser. 2, 57:3 (1953), 401–457 ; Sigal I.E., “Nekommutativnoe obobschenie abstraktnogo integrirovaniya”, Matematika: Sb. per., 6:1 (1962), 65–132 | DOI | MR | Zbl | MR

[2] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[3] Padmanabhan A.R., “Probabilistic aspects of von Neumann algebras”, J. Funct. Anal., 31:2 (1979), 139–149 | DOI | MR | Zbl

[4] Terp M., $L^p$-spaces associated with von Neumann algebras, Copenhagen Univ., Copenhagen, 1981

[5] Bikchentaev A.M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Mat. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[6] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau $-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[7] Pisier G., Xu Q., “Non-commutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl

[8] Bikchentaev A.M., “K teorii $\tau $-izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Mat. zametki, 98:3 (2015), 337–348 | DOI | MR | Zbl

[9] Bikchentaev A.M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Tr. MIAN, 255 (2006), 41–54 | MR | Zbl

[10] Bikchentaev A.M., “O normalnykh $\tau $-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Mat. zametki, 96:3 (2014), 350–360 | DOI | MR | Zbl

[11] Bikchentaev A.M., “On noncommutative function spaces”, Selected papers in $K$-theory, AMS Transl. Ser. 2, 154, Amer. Math. Soc., Providence, RI, 1992, 179–187

[12] Brown L.G., Kosaki H., “Jensen's inequality in semi-finite von Neumann algebras”, J. Oper. Theory, 23:1 (1990), 3–19 | MR | Zbl

[13] Akemann C.A., Anderson J., Pedersen G.K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[14] Takesaki M., Theory of operator algebras, V. 1., 1, Springer, Berlin, 1979 | MR

[15] Glazman I.M., Lyubich Yu.I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR

[16] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR

[17] Bikchentaev A.M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matematika, 2012, no. 2, 86–91 | MR | Zbl

[18] Dodds P.G., Dodds T.K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl

[19] Pedersen G.K., Takesaki M., “The Radon–Nikodym theorem for von Neumann algebras”, Acta math., 130 (1973), 53–87 | DOI | MR | Zbl

[20] Bogachev V.I., Osnovy teorii mery, 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2006