Boundedness and compactness of a~class of convolution integral operators of fractional integration type
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 263-279

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of convolution integral operators whose kernels may have integrable singularities, boundedness and compactness criteria in weighted Lebesgue spaces are obtained.
@article{TRSPY_2016_293_a17,
     author = {R. Oinarov},
     title = {Boundedness and compactness of a~class of convolution integral operators of fractional integration type},
     journal = {Informatics and Automation},
     pages = {263--279},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/}
}
TY  - JOUR
AU  - R. Oinarov
TI  - Boundedness and compactness of a~class of convolution integral operators of fractional integration type
JO  - Informatics and Automation
PY  - 2016
SP  - 263
EP  - 279
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/
LA  - ru
ID  - TRSPY_2016_293_a17
ER  - 
%0 Journal Article
%A R. Oinarov
%T Boundedness and compactness of a~class of convolution integral operators of fractional integration type
%J Informatics and Automation
%D 2016
%P 263-279
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/
%G ru
%F TRSPY_2016_293_a17
R. Oinarov. Boundedness and compactness of a~class of convolution integral operators of fractional integration type. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 263-279. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/