Boundedness and compactness of a~class of convolution integral operators of fractional integration type
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 263-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of convolution integral operators whose kernels may have integrable singularities, boundedness and compactness criteria in weighted Lebesgue spaces are obtained.
@article{TRSPY_2016_293_a17,
     author = {R. Oinarov},
     title = {Boundedness and compactness of a~class of convolution integral operators of fractional integration type},
     journal = {Informatics and Automation},
     pages = {263--279},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/}
}
TY  - JOUR
AU  - R. Oinarov
TI  - Boundedness and compactness of a~class of convolution integral operators of fractional integration type
JO  - Informatics and Automation
PY  - 2016
SP  - 263
EP  - 279
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/
LA  - ru
ID  - TRSPY_2016_293_a17
ER  - 
%0 Journal Article
%A R. Oinarov
%T Boundedness and compactness of a~class of convolution integral operators of fractional integration type
%J Informatics and Automation
%D 2016
%P 263-279
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/
%G ru
%F TRSPY_2016_293_a17
R. Oinarov. Boundedness and compactness of a~class of convolution integral operators of fractional integration type. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 263-279. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a17/

[1] Prokhorov D.V., Stepanov V.D., “Vesovye otsenki operatorov Rimana–Liuvillya i prilozheniya”, Tr. MIAN, 243 (2003), 289–312 | MR | Zbl

[2] Lorente M., “A characterization of two weight norm inequalities for one-sided operators of fractional type”, Can. J. Math., 49:5 (1997), 1010–1033 | DOI | MR | Zbl

[3] Meskhi A., “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl

[4] Prokhorov D.V., “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc. Ser. 2, 61:2 (2000), 617–628 | DOI | MR | Zbl

[5] Farsani S.M., “Ob ogranichennosti i kompaktnosti drobnykh operatorov Rimana–Liuvillya”, Sib. mat. zhurn., 54:2 (2013), 468–479 | MR | Zbl

[6] Rautian N.A., “Ob ogranichennosti odnogo klassa integralnykh operatorov drobnogo tipa”, Mat. sb., 200:12 (2009), 81–106 | DOI | MR | Zbl

[7] Kufner A., Maligranda L., Persson L.-E., The Hardy inequality: About its history and some related results, Vydavatelský Servis, Plzeň, 2007 | MR | Zbl

[8] Sinnamon G., Stepanov V.D., “The weighted Hardy inequality: New proofs and the case $p=1$”, J. London Math. Soc. Ser. 2, 54:1 (1996), 89–101 | DOI | MR | Zbl

[9] Stepanov V.D., Ushakova E.P., “Ob integralnykh operatorakh s peremennymi predelami integrirovaniya”, Tr. MIAN, 232 (2001), 298–317 | MR | Zbl

[10] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[11] Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevskii P.E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR