On the Nikol'skii and Potapov classes of functions
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 224-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Nikol'skii classes $H_1^r$ and Potapov classes $A_1^r$ contain the class $W_1^r$ for $r>1/2$.
@article{TRSPY_2016_293_a15,
     author = {V. P. Motornyi},
     title = {On the {Nikol'skii} and {Potapov} classes of functions},
     journal = {Informatics and Automation},
     pages = {224--235},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a15/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - On the Nikol'skii and Potapov classes of functions
JO  - Informatics and Automation
PY  - 2016
SP  - 224
EP  - 235
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a15/
LA  - ru
ID  - TRSPY_2016_293_a15
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T On the Nikol'skii and Potapov classes of functions
%J Informatics and Automation
%D 2016
%P 224-235
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a15/
%G ru
%F TRSPY_2016_293_a15
V. P. Motornyi. On the Nikol'skii and Potapov classes of functions. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 224-235. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a15/

[1] Potapov M.K., “O teoremakh tipa Dzheksona v metrike $L_p$”, DAN SSSR, 111:6 (1956), 1185–1188 | MR | Zbl

[2] Potapov M.K., “O priblizhenii neperiodicheskikh funktsii algebraicheskimi polinomami”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1960, no. 4, 14–25 | Zbl

[3] Potapov M.K., “O priblizhenii algebraicheskimi polinomami v metrike $L_p$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 64–69 | MR

[4] Motornyi V.P., “Priblizhenie funktsii algebraicheskimi polinomami v metrike $L_p$”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 874–899 | MR