Relative widths of Sobolev classes in the uniform and integral metrics
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 217-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W^r_p$ be the Sobolev class consisting of $2\pi$-periodic functions $f$ such that $\|f^{(r)}\|_p\le1$. We consider the relative widths $d_n(W^r_p,MW^r_p,L_p)$, which characterize the best approximation of the class $W^r_p$ in the space $L_p$ by linear subspaces for which (in contrast to Kolmogorov widths) it is additionally required that the approximating functions $g$ should lie in $MW^r_p$, i.e., $\|g^{(r)}\|_p\le M$. We establish estimates for the relative widths in the cases of $p=1$ and $p=\infty$; it follows from these estimates that for almost optimal (with error at most $Cn^{-r}$, where $C$ is an absolute constant) approximations of the class $W^r_p$ by linear $2n$-dimensional spaces, the norms of the $r$th derivatives of some approximating functions are not less than $c\ln\min(n,r)$ for large $n$ and $r$.
@article{TRSPY_2016_293_a14,
     author = {Yu. V. Malykhin},
     title = {Relative widths of {Sobolev} classes in the uniform and integral metrics},
     journal = {Informatics and Automation},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a14/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - Relative widths of Sobolev classes in the uniform and integral metrics
JO  - Informatics and Automation
PY  - 2016
SP  - 217
EP  - 223
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a14/
LA  - ru
ID  - TRSPY_2016_293_a14
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T Relative widths of Sobolev classes in the uniform and integral metrics
%J Informatics and Automation
%D 2016
%P 217-223
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a14/
%G ru
%F TRSPY_2016_293_a14
Yu. V. Malykhin. Relative widths of Sobolev classes in the uniform and integral metrics. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 217-223. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a14/

[1] Lorentz G.G., von Golitschek M., Makovoz Yu., Constructive approximation: Advanced problems, (Grundl. Math. Wiss.; Bd. 304)., Springer, Berlin, 1996 | MR | Zbl

[2] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR | Zbl

[3] Tikhomirov V.M., “Teoriya priblizhenii”, Analiz–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 14, VINITI, M., 1987, 103–260 | MR

[4] Konovalov V.N., “Otsenki poperechnikov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Mat. zametki, 35:3 (1984), 369–380 | MR | Zbl

[5] Babenko V.F., “O nailuchshikh ravnomernykh priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Mat. zametki, 50:6 (1991), 24–30 | MR | Zbl

[6] Subbotin Yu.N., Telyakovskii S.A., “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Mat. zametki, 65:6 (1999), 871–879 | DOI | MR | Zbl

[7] Garkavi A.L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. mat., 24:1 (1960), 103–128 | MR | Zbl

[8] Tikhomirov V.M., “Some remarks on relative diameters”, Approximation and function spaces, Banach Cent. Publ., 22, PWN Pol. Sci. Publ., Warszawa, 1989, 471–474 | MR

[9] Konovalov V.N., “Priblizhenie klassov Soboleva ikh konechnomernymi secheniyami”, Mat. zametki, 72:3 (2002), 370–382 | DOI | MR | Zbl

[10] Subbotin Yu.N., Telyakovskii S.A., “Splainy i otnositelnye poperechniki klassov differentsiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 208–216

[11] Subbotin Yu.N., Telyakovskii S.A., “Otnositelnye poperechniki klassov differentsiruemykh funktsii v metrike $L^2$”, UMN, 56:4 (2001), 159–160 | DOI | MR | Zbl

[12] Privalov Al.A., “O roste stepenei polinomialnykh bazisov i priblizhenii trigonometricheskikh proektorov”, Mat. zametki, 42:2 (1987), 207–214 | MR

[13] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR