Exactness and optimality of methods for recovering functions from their spectrum
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 201-216
Voir la notice de l'article provenant de la source Math-Net.Ru
Optimal methods are constructed for recovering functions and their derivatives in a Sobolev class of functions on the line from exactly or approximately defined Fourier transforms of these functions on an arbitrary measurable set. The methods are exact on certain subspaces of entire functions. Optimal recovery methods are also constructed for wider function classes obtained as the sum of the original Sobolev class and a subspace of entire functions.
@article{TRSPY_2016_293_a13,
author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
title = {Exactness and optimality of methods for recovering functions from their spectrum},
journal = {Informatics and Automation},
pages = {201--216},
publisher = {mathdoc},
volume = {293},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a13/}
}
TY - JOUR AU - G. G. Magaril-Il'yaev AU - K. Yu. Osipenko TI - Exactness and optimality of methods for recovering functions from their spectrum JO - Informatics and Automation PY - 2016 SP - 201 EP - 216 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a13/ LA - ru ID - TRSPY_2016_293_a13 ER -
G. G. Magaril-Il'yaev; K. Yu. Osipenko. Exactness and optimality of methods for recovering functions from their spectrum. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 201-216. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a13/