On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 193-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions are established for the continuity of finite sums of ridge functions defined on convex subsets $E$ of the space $\mathbb R^n$. It is shown that under some constraints imposed on the summed functions $\varphi _i$, in the case when $E$ is open, the continuity of the sum implies the continuity of all $\varphi _i$. In the case when $E$ is a convex body with nonsmooth boundary, a logarithmic estimate is obtained for the growth of the functions $\varphi _i$ in the neighborhoods of the boundary points of their domains of definition. In addition, an example is constructed that demonstrates the accuracy of the estimate obtained.
@article{TRSPY_2016_293_a12,
     author = {S. V. Konyagin and A. A. Kuleshov},
     title = {On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$},
     journal = {Informatics and Automation},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a12/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. A. Kuleshov
TI  - On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
JO  - Informatics and Automation
PY  - 2016
SP  - 193
EP  - 200
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a12/
LA  - ru
ID  - TRSPY_2016_293_a12
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. A. Kuleshov
%T On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
%J Informatics and Automation
%D 2016
%P 193-200
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a12/
%G ru
%F TRSPY_2016_293_a12
S. V. Konyagin; A. A. Kuleshov. On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$. Informatics and Automation, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 193-200. http://geodesic.mathdoc.fr/item/TRSPY_2016_293_a12/

[1] Logan B.F., Shepp L.A., “Optimal reconstruction of a function from its projections”, Duke Math. J., 42:4 (1975), 645–659 | DOI | MR | Zbl

[2] Courant R., Hilbert D., Methoden der mathematischen Physik, Bd. 2., Springer, Berlin, 1937

[3] John F., Plane waves and spherical means applied to partial differential equations, Interscience, New York, 1955 | MR | Zbl

[4] Ofman Yu.P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi (x)+\psi (y)$”, Izv. AN SSSR. Ser. mat., 25:2 (1961), 239–252 | MR | Zbl

[5] Khavinson S.Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi (x)+\psi (y)$”, Izv. AN SSSR. Ser. mat., 33:3 (1969), 650–666 | MR | Zbl

[6] Sun X., Cheney E.W., “The fundamentality of sets of ridge functions”, Aequationes math., 44 (1992), 226–235 | DOI | MR | Zbl

[7] Braess D., Pinkus A., “Interpolation by ridge functions”, J. Approx. Theory., 73 (1993), 218–236 | DOI | MR | Zbl

[8] Maiorov V.E., “On best approximation by ridge functions”, J. Approx. Theory., 99 (1999), 68–94 | DOI | MR | Zbl

[9] Ismailov V.E., Pinkus A., “Interpolation on lines by ridge functions”, J. Approx. Theory., 175 (2013), 91–113 | DOI | MR | Zbl

[10] Aliev R.A., Ismailov V.E., “On a smoothness problem in ridge function representation”, Adv. Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl

[11] Pinkus A., Ridge functions, Cambridge Tracts Math., 205, Cambridge Univ. Press, Cambridge, 2015 | Zbl

[12] Vasileva A.A., “Entropiinye chisla operatorov vlozheniya vesovykh prostranstv Soboleva”, Mat. zametki., 98:6 (2015), 937–940 | DOI | MR | Zbl

[13] Vasileva A.A., “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Mat. sb., 206:10 (2015), 37–70 | DOI | MR | Zbl

[14] Golovko A.Yu., “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Tr. MIAN., 290 (2015), 293–303 | Zbl

[15] Konyagin S.V., Kuleshov A.A., “O nepreryvnosti konechnykh summ ridzh-funktsii”, Mat. zametki., 98:2 (2015), 308–309 | DOI | MR | Zbl

[16] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002

[17] Herrlich H., Axiom of choice, Lect. Notes Math., 1876, Springer, Berlin, 2006 | MR | Zbl

[18] Whitney H., “On functions with bounded $n$th differences”, J. math. pures appl. Sér. 9., 36 (1957), 67–95 | MR | Zbl

[19] Kryakin Yu.V., “Konstanty Uitni ogranicheny dvoikoi”, Mat. zametki., 53:5 (1993), 158–160 | MR | Zbl

[20] de Bruijn N.G., “Functions whose differences belong to a given class”, Nieuw Arch. Wiskd. Ser. 2., 23 (1951), 194–218 | MR | Zbl