Frattini and related subgroups of mapping class groups
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 149-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma _{g,b}$ denote the orientation-preserving mapping class group of a closed orientable surface of genus $g$ with $b$ punctures. For a group $G$ let $\Phi _f(G)$ denote the intersection of all maximal subgroups of finite index in $G$. Motivated by a question of Ivanov as to whether $\Phi _f(G)$ is nilpotent when $G$ is a finitely generated subgroup of $\Gamma _{g,b}$, in this paper we compute $\Phi _f(G)$ for certain subgroups of $\Gamma _{g,b}$. In particular, we answer Ivanov's question in the affirmative for these subgroups of $\Gamma _{g,b}$.
@article{TRSPY_2016_292_a8,
     author = {G. Masbaum and A. W. Reid},
     title = {Frattini and related subgroups of mapping class groups},
     journal = {Informatics and Automation},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a8/}
}
TY  - JOUR
AU  - G. Masbaum
AU  - A. W. Reid
TI  - Frattini and related subgroups of mapping class groups
JO  - Informatics and Automation
PY  - 2016
SP  - 149
EP  - 158
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a8/
LA  - en
ID  - TRSPY_2016_292_a8
ER  - 
%0 Journal Article
%A G. Masbaum
%A A. W. Reid
%T Frattini and related subgroups of mapping class groups
%J Informatics and Automation
%D 2016
%P 149-158
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a8/
%G en
%F TRSPY_2016_292_a8
G. Masbaum; A. W. Reid. Frattini and related subgroups of mapping class groups. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 149-158. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a8/

[1] Allenby R.B.J.T., Boler J., Evans B., Moser L.E., Tang C.Y., “Frattini subgroups of 3-manifold groups”, Trans. Amer. Math. Soc., 247 (1979), 275–300 | MR | Zbl

[2] Andersen J.E., “Asymptotic faithfulness of the quantum $\mathrm {SU}(n)$ representations of the mapping class groups”, Ann. Math. Ser. 2, 163 (2006), 347–368 | DOI | MR | Zbl

[3] Andersen J.E., Masbaum G., Ueno K., “Topological quantum field theory and the Nielsen–Thurston classification of $M(0,4)$”, Math. Proc. Cambridge Philos. Soc., 141 (2006), 477–488 | DOI | MR | Zbl

[4] Aoun R., “Transience of algebraic varieties in linear groups—applications to generic Zariski density”, Ann. Inst. Fourier., 63 (2013), 2049–2080 | DOI | MR | Zbl

[5] Bass H., Milnor J., Serre J.-P., “Solution of the congruence subgroup problem for $\mathrm {SL}_n$ ($n\geq 3$) and $\mathrm {Sp}_{2n}$ ($n\geq 2$)”, Publ. Math. Inst. Hautes Étud. Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[6] Bigelow S.J., Budney R.D., “The mapping class group of a genus two surface is linear”, Algebr. Geom. Topol., 1 (2001), 699–708 | DOI | MR | Zbl

[7] Blanchet C., Habegger N., Masbaum G., Vogel P., “Topological quantum field theories derived from the Kauffman bracket”, Topology, 34 (1995), 883–927 | DOI | MR | Zbl

[8] Deligne P., Mostow G.D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. Math. Inst. Hautes Étud. Sci., 63 (1986), 5–89 | DOI | MR | Zbl

[9] Eberlein P.B., Geometry of nonpositively curved manifolds, Univ. Chicago Press, Chicago, 1996 | MR | Zbl

[10] Farb B., Margalit D., A primer on mapping class groups, Princeton Univ. Press, Princeton, NJ, 2012 | MR

[11] Freedman M.H., Walker K., Wang Z., “Quantum $SU(2)$ faithfully detects mapping class groups modulo center”, Geom. Topol., 6 (2002), 523–539 | DOI | MR | Zbl

[12] Funar L., “Zariski density and finite quotients of mapping class groups”, Int. Math. Res. Not., 2013:9 (2013), 2078–2096 | MR | Zbl

[13] Gilman R., “Finite quotients of the automorphism group of a free group”, Can. J. Math., 29 (1977), 541–551 | DOI | MR | Zbl

[14] Gilmer P.M., Masbaum G., “Integral lattices in TQFT”, Ann. Sci. Éc. Norm. Supér., 40 (2007), 815–844 | MR | Zbl

[15] Hall P., “The Frattini subgroups of finitely generated groups”, Proc. London Math. Soc. Ser. 3, 11 (1961), 327–352 | DOI | MR | Zbl

[16] Hoshi Y., Mochizuki S., “Topics surrounding the combinatorial anabelian geometry of hyperbolic curves. I: Inertia groups and profinite Dehn twists”, Galois–Teichmüller theory and arithmetic geometry, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo, 2012, 659–811 | MR | Zbl

[17] Hull M., Small cancellation in acylindrically hyperbolic groups, E-print, 2013, arXiv: 1308.4345 [math.GR] | MR

[18] Ivanov N.V., Subgroups of Teichmüller modular groups, Transl. Math. Monogr., 115, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[19] Ivanov N.V., “Fifteen problems about the mapping class groups”, Problems on mapping class groups and related topics, Proc. Symp. Pure Math., 74, Ed. by B. Farb, Amer. Math. Soc., Providence, RI, 2006, 71–80 | DOI | MR | Zbl

[20] Larsen M., Wang Z., “Density of the $\mathrm {SO}(3)$ TQFT representation of mapping class groups”, Commun. Math. Phys., 260 (2005), 641–658 | DOI | MR | Zbl

[21] Long D.D., “A note on normal subgroups of the mapping class groups”, Math. Proc. Cambridge Philos. Soc., 99 (1986), 79–87 | DOI | MR | Zbl

[22] Lubotzky A., Shalom Y., “Finite representations in the unitary dual and Ramanujan groups”, Discrete geometric analysis, Contemp. Math., 347, Amer. Math. Soc., Providence, RI, 2004, 173–189 | DOI | MR | Zbl

[23] Masbaum G., Reid A.W., “All finite groups are involved in the mapping class group”, Geom. Topol., 16 (2012), 1393–1411 | DOI | MR | Zbl

[24] Nikolov N., Segal D., “On finitely generated profinite groups. I: Strong completeness and uniform bounds”, Ann. Math. Ser. 2, 165 (2007), 171–238 | DOI | MR | Zbl

[25] Platonov V.P., “The Frattini subgroup of linear groups and finite approximability”, Sov. Math. Dokl., 7 (1966), 1557–1560 | MR | Zbl

[26] Reshetikhin N., Turaev V.G., “Invariants of 3-manifolds via link polynomials and quantum groups”, Invent. math., 103 (1991), 547–597 | DOI | MR | Zbl

[27] Ribes L., Zalesskii P., Profinite groups, Ergeb. Math. Grenzgeb. 3. Folge, 40, Springer, Berlin, 2000 | MR | Zbl

[28] Rivin I., “Zariski density and genericity”, Int. Math. Res. Not., 2010:19 (2010), 3649–3657 | MR | Zbl

[29] Rose J.S., A course on group theory, Dover Publ., New York, 1994 | MR | Zbl

[30] Vogtmann K., “Automorphisms of free groups and outer space”, Geom. dedicata, 94 (2002), 1–31 | DOI | MR | Zbl