Random methods in 3-manifold theory
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 124-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The surface map arising from a random walk on the mapping class group may be used as the gluing map for a Heegaard splitting, and the resulting 3-manifold is known as a random Heegaard splitting. We show that the splitting distance of random Heegaard splittings grows linearly in the length of the random walk, with an exponential decay estimate for the proportion with slower growth. We use this to obtain the limiting distribution of Casson invariants of random Heegaard splittings.
@article{TRSPY_2016_292_a7,
     author = {Alexander Lubotzky and Joseph Maher and Conan Wu},
     title = {Random methods in 3-manifold theory},
     journal = {Informatics and Automation},
     pages = {124--148},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a7/}
}
TY  - JOUR
AU  - Alexander Lubotzky
AU  - Joseph Maher
AU  - Conan Wu
TI  - Random methods in 3-manifold theory
JO  - Informatics and Automation
PY  - 2016
SP  - 124
EP  - 148
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a7/
LA  - en
ID  - TRSPY_2016_292_a7
ER  - 
%0 Journal Article
%A Alexander Lubotzky
%A Joseph Maher
%A Conan Wu
%T Random methods in 3-manifold theory
%J Informatics and Automation
%D 2016
%P 124-148
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a7/
%G en
%F TRSPY_2016_292_a7
Alexander Lubotzky; Joseph Maher; Conan Wu. Random methods in 3-manifold theory. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 124-148. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a7/

[1] Akbulut S., McCarthy J.D., Casson's invariant for oriented homology 3-spheres, Math. Notes, 36, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl

[2] Blachère S., Haïssinsky P., Mathieu P., “Harmonic measures versus quasiconformal measures for hyperbolic groups”, Ann. sci. Éc. Norm. Supér. Sér. 4, 44:4 (2011), 683–721 | MR | Zbl

[3] Bridson M.R., Haefliger A., Metric spaces of non-positive curvature, Grundl. Math. Wiss., 319, Springer, Berlin, 1999 | MR | Zbl

[4] Dunfield N.M., Thurston W.P., “Finite covers of random 3-manifolds”, Invent. math., 166:3 (2006), 457–521 | DOI | MR | Zbl

[5] Dunfield N.M., Thurston D.P., “A random tunnel number one 3-manifold does not fiber over the circle”, Geom. Topol., 10 (2006), 2431–2499 | DOI | MR | Zbl

[6] Dunfield N.M., Wong H., “Quantum invariants of random 3-manifolds”, Algebr. Geom. Topol., 11:4 (2011), 2191–2205 | DOI | MR | Zbl

[7] Sur les groupes hyperboliques d'après Mikhael Gromov, Prog. Math., 83, Ed. by E. Ghys, P. de la Harpe, Birkhäuser, Boston, MA, 1990 | MR | Zbl

[8] Hamenstädt U., “Train tracks and the Gromov boundary of the complex of curves”, Spaces of Kleinian groups, LMS Lect. Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006, 187–207 | MR | Zbl

[9] Hempel J., 3-manifolds, Ann. Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976 | MR | Zbl

[10] Hempel J., “3-manifolds as viewed from the curve complex”, Topology, 40:3 (2001), 631–657 | DOI | MR | Zbl

[11] Ito T., On a structure of random open books and closed braids, E-print, 2015, arXiv: 1504.04446 [math.GT] | MR

[12] Ivanov N.V., Subgroups of Teichmüller modular groups, Transl. Math. Monogr., 115, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[13] Johnson D., “The structure of the Torelli group. I: A finite set of generators for $\mathcal I$”, Ann. Math. Ser. 2, 118:3 (1983), 423–442 | DOI | MR | Zbl

[14] Kerckhoff S.P., “The measure of the limit set of the handlebody group”, Topology, 29:1 (1990), 27–40 | DOI | MR | Zbl

[15] Klarreich E., The boundary at infinity of the curve complex and the relative Teichmüller space, Preprint, Univ. Michigan, Ann Arbor, 1999 | MR

[16] Kobayashi T., “Heights of simple loops and pseudo-Anosov homeomorphisms”, Braids, Proc. Conf. Santa Cruz, CA, 1986, Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 327–338 | DOI | MR

[17] Kobayashi T., “Casson–Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds”, Osaka J. Math., 25:3 (1988), 553–573 | MR | Zbl

[18] Kowalski E., The large sieve and its applications: Arithmetic geometry, random walks and discrete groups, Cambridge Tracts Math., 175, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[19] Lawler G.F., Limic V., Random walk: A modern introduction, Cambridge Stud. Adv. Math., 123, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[20] Lindvall T., Lectures on the coupling method, J. Wiley Sons, New York, 1992 | MR | Zbl

[21] Ma J., “The closure of a random braid is a hyperbolic link”, Proc. Amer. Math. Soc., 142:2 (2014), 695–701 | MR | Zbl

[22] Maher J., “Random Heegaard splittings”, J. Topol., 3:4 (2010), 997–1025 | DOI | MR | Zbl

[23] Maher J., “Random walks on the mapping class group”, Duke Math. J., 156:3 (2011), 429–468 | DOI | MR | Zbl

[24] Maher J., “Exponential decay in the mapping class group”, J. London Math. Soc. Ser. 2, 86:2 (2012), 366–386 | DOI | MR | Zbl

[25] Masai H., Fibered commensurability and arithmeticity of random mapping tori, E-print, 2014, arXiv: 1408.0348 [math.GT]

[26] Masur H.A., Minsky Y.N., “Geometry of the complex of curves. I: Hyperbolicity”, Invent. math., 138:1 (1999), 103–149 | DOI | MR | Zbl

[27] Masur H.A., Minsky Y.N., “Quasiconvexity in the curve complex”, In the tradition of Ahlfors and Bers, III, Proc. Colloq., Storrs, CT, USA, 2001, Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004, 309–320 | DOI | MR | Zbl

[28] McCullough D., Miller A., “The genus 2 Torelli group is not finitely generated”, Topology Appl., 22:1 (1986), 43–49 | DOI | MR | Zbl

[29] Morgan J., Tian G., Ricci flow and the Poincaré conjecture, Clay Math. Monogr., 3, Amer. Math. Soc., Providence, RI, 2007 | MR

[30] Morita S., “Casson invariant, signature defect of framed manifolds and the secondary characteristic classes of surface bundles”, J. Diff. Geom., 47:3 (1997), 560–599 | MR | Zbl

[31] Penner R.C., Harer J.L., Combinatorics of train tracks, Ann. Math. Stud., 125, Princeton Univ. Press, Princeton, NJ, 1992 | MR | Zbl

[32] Rivin I., “Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms”, Duke Math. J., 142:2 (2008), 353–379 | DOI | MR | Zbl

[33] Rivin I., Statistics of random 3-manifolds occasionally fibering over the circle, E-print, 2014, arXiv: 1401.5736 [math.GT]

[34] Saveliev N., Invariants for homology 3-spheres, Encycl. Math. Sci., 140, Low-Dimens. Topol., Springer, Berlin, 2002 | MR | Zbl

[35] Scharlemann M., Tomova M., “Alternate Heegaard genus bounds distance”, Geom. Topol., 10 (2006), 593–617 | DOI | MR | Zbl

[36] Woess W., Random walks on infinite graphs and groups, Cambridge Tracts Math., 138, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl