Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a5, author = {Rostislav Grigorchuk and Dmytro Savchuk}, title = {Ergodic decomposition of group actions on rooted trees}, journal = {Informatics and Automation}, pages = {100--117}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/} }
Rostislav Grigorchuk; Dmytro Savchuk. Ergodic decomposition of group actions on rooted trees. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 100-117. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/
[1] Benli M.G., Grigorchuk R., Nagnibeda T., “Universal groups of intermediate growth and their invariant random subgroups”, Funct. Anal. Appl., 49 (2015), 159–174 | DOI | DOI | MR | Zbl
[2] Bondarenko I., Grigorchuk R., Kravchenko R., Muntyan Y., Nekrashevych V., Savchuk D., Šunić Z., “Classification of groups generated by 3-state automata over 2-letter alphabet”, Algebra Discrete Math., 2008, no. 1, 1–163, arXiv: 0803.3555 [math.GR] | MR | Zbl
[3] Bondarenko I.V., Savchuk D.M., “On Sushchansky $p$-groups”, Algebra Discrete Math., 2007, no. 2, 22–42, arXiv: math/0612200 [math.GR] | MR | Zbl
[4] Buescu J., Kulczycki M., Stewart I., “Liapunov stability and adding machines revisited”, Dyn. Syst., 21:3 (2006), 379–384 | DOI | MR | Zbl
[5] Buescu J., Stewart I., “Liapunov stability and adding machines”, Ergodic Theory Dyn. Syst., 15:2 (1995), 271–290 | DOI | MR | Zbl
[6] Bufetov A.I., “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205 (2014), 192–219 | DOI | DOI | MR | Zbl
[7] Epstein D.B.A., Cannon J.W., Holt D.F., Levy S.V.F., Paterson M.S., Thurston W.P., Word processing in groups, Jones and Bartlett Publ., Boston, MA, 1992 | MR | Zbl
[8] Farrell R.H., “Representation of invariant measures”, Ill. J. Math., 6 (1962), 447–467 | MR | Zbl
[9] Fine N.J., “Binomial coefficients modulo a prime”, Amer. Math. Mon., 54 (1947), 589–592 | DOI | MR | Zbl
[10] Fomin S.V., “On measures invariant under a group of transformations”, Am. Math. Soc. Transl. Ser. 2, 51 (1966), 317–332 | MR | Zbl | Zbl
[11] Gawron P.W., Nekrashevych V.V., Sushchansky V.I., “Conjugation in tree automorphism groups”, Int. J. Algebra Comput., 11:5 (2001), 529–547 | DOI | MR | Zbl
[12] Grigorchuk R.I., “Burnside's problem on periodic groups”, Funct. Anal. Appl., 14 (1980), 41–43 | DOI | MR | Zbl
[13] Grigorchuk R.I., “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR, Izv., 25:2 (1985), 259–300 | DOI | MR | MR | Zbl
[14] Grigorchuk R.I., “Just infinite branch groups”, New horizons in pro-$p$ groups, Prog. Math., 184, Birkhäuser, Boston, MA, 2000, 121–179 | MR | Zbl
[15] Grigorchuk R., “Solved and unsolved problems around one group”, Infinite groups: Geometric, combinatorial and dynamical aspects, Progr. Math., 284, Birkhäuser, Basel, 2005, 117–218 | DOI | MR
[16] Grigorchuk R.I., “Some topics in the dynamics of group actions on rooted trees”, Proc. Steklov Inst. Math., 273 (2011), 64–175 | DOI | MR | Zbl
[17] Grigorchuk R., de la Harpe P., Amenability and ergodic properties of topological groups: From Bogolyubov onwards, E-print, 2014, arXiv: 1404.7030 [math.GR] | MR
[18] Grigorchuk R.I., Nekrashevich V.V., Sushchanskii V.I., “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231 (2000), 128–203 | MR | Zbl
[19] Grigorchuk R., Šunić Z., “Schreier spectrum of the Hanoi Towers group on three pegs”, Analysis on graphs and its applications, Proc. Symp. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 183–198 | DOI | MR | Zbl
[20] Grigorchuk R.I., Żuk A., “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. dedicata, 87:1–3 (2001), 209–244 | DOI | MR | Zbl
[21] Grigorchuk R.I., Żuk A., “On a torsion-free weakly branch group defined by a three state automaton”, Int. J. Algebra Comput., 12:1–2 (2002), 223–246 | DOI | MR | Zbl
[22] Kaloujnine L., “La structure des $p$-groupes de Sylow des groupes symétriques finis”, Ann. Sci. Éc. Norm. Super. Sér. 3, 65 (1948), 239–276 | MR | Zbl
[23] Kechris A.S., Miller B.D., Topics in orbit equivalence, Lect. Notes Math., 1852, Springer, Berlin, 2004 | DOI | MR | Zbl
[24] Klimann I., “The finiteness of a group generated by a 2-letter invertible–reversible Mealy automaton is decidable”, Proc. 30th Int. Symp. on Theoretical Aspects of Computer Science (STACS 2013), Leibniz Int. Proc. Inform., 20, Ed. by N. Portier, T. Wilke, Schloss Dagstuhl–Leibniz-Zent. Inform., Wadern, 2013, 502–513 | MR
[25] Klimann I., Picantin M., Savchuk D., A connected 3-state reversible Mealy automaton cannot generate an infinite Burnside group, E-print, 2014, arXiv: 1409.6142 [cs.FL] | MR
[26] Klimann I., Picantin M., Savchuk D., Orbit automata as a new tool to attack the order problem in automaton groups, E-print, 2014, arXiv: 1411.0158 [math.GR] | MR
[27] Kolmogoroff A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1973 | MR | Zbl
[28] Mackey G.W., “Ergodic transformation groups with a pure point spectrum”, Ill. J. Math., 8 (1964), 593–600 | MR | Zbl
[29] Nekrashevych V., Self-similar groups, Math. Surv. Monogr., 117, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl
[30] Parthasarathy K.R., Probability measures on metric spaces, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl
[31] Rokhlin V.A., “Selected topics from the metric theory of dynamical systems”, Am. Math. Soc. Transl. Ser. 2, 49 (1966), 171–240 | MR | Zbl | Zbl
[32] Savchuk D.M., Sidki S.N., “Affine automorphisms of rooted trees”, Geom. dedicata (to appear) , arXiv: 1510.08434 [math.GR]
[33] Suščanskiĭ V.I., “Periodic $p$-groups of permutations and the unrestricted Burnside problem”, Sov. Math. Dokl., 20 (1979), 766–770 | MR
[34] Varadarajan V.S., “Groups of automorphisms of Borel spaces”, Trans. Amer. Math. Soc., 109 (1963), 191–220 | DOI | MR | Zbl