Ergodic decomposition of group actions on rooted trees
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 100-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.
@article{TRSPY_2016_292_a5,
     author = {Rostislav Grigorchuk and Dmytro Savchuk},
     title = {Ergodic decomposition of group actions on rooted trees},
     journal = {Informatics and Automation},
     pages = {100--117},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/}
}
TY  - JOUR
AU  - Rostislav Grigorchuk
AU  - Dmytro Savchuk
TI  - Ergodic decomposition of group actions on rooted trees
JO  - Informatics and Automation
PY  - 2016
SP  - 100
EP  - 117
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/
LA  - en
ID  - TRSPY_2016_292_a5
ER  - 
%0 Journal Article
%A Rostislav Grigorchuk
%A Dmytro Savchuk
%T Ergodic decomposition of group actions on rooted trees
%J Informatics and Automation
%D 2016
%P 100-117
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/
%G en
%F TRSPY_2016_292_a5
Rostislav Grigorchuk; Dmytro Savchuk. Ergodic decomposition of group actions on rooted trees. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 100-117. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/