Ergodic decomposition of group actions on rooted trees
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 100-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.
@article{TRSPY_2016_292_a5,
     author = {Rostislav Grigorchuk and Dmytro Savchuk},
     title = {Ergodic decomposition of group actions on rooted trees},
     journal = {Informatics and Automation},
     pages = {100--117},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/}
}
TY  - JOUR
AU  - Rostislav Grigorchuk
AU  - Dmytro Savchuk
TI  - Ergodic decomposition of group actions on rooted trees
JO  - Informatics and Automation
PY  - 2016
SP  - 100
EP  - 117
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/
LA  - en
ID  - TRSPY_2016_292_a5
ER  - 
%0 Journal Article
%A Rostislav Grigorchuk
%A Dmytro Savchuk
%T Ergodic decomposition of group actions on rooted trees
%J Informatics and Automation
%D 2016
%P 100-117
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/
%G en
%F TRSPY_2016_292_a5
Rostislav Grigorchuk; Dmytro Savchuk. Ergodic decomposition of group actions on rooted trees. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 100-117. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a5/

[1] Benli M.G., Grigorchuk R., Nagnibeda T., “Universal groups of intermediate growth and their invariant random subgroups”, Funct. Anal. Appl., 49 (2015), 159–174 | DOI | DOI | MR | Zbl

[2] Bondarenko I., Grigorchuk R., Kravchenko R., Muntyan Y., Nekrashevych V., Savchuk D., Šunić Z., “Classification of groups generated by 3-state automata over 2-letter alphabet”, Algebra Discrete Math., 2008, no. 1, 1–163, arXiv: 0803.3555 [math.GR] | MR | Zbl

[3] Bondarenko I.V., Savchuk D.M., “On Sushchansky $p$-groups”, Algebra Discrete Math., 2007, no. 2, 22–42, arXiv: math/0612200 [math.GR] | MR | Zbl

[4] Buescu J., Kulczycki M., Stewart I., “Liapunov stability and adding machines revisited”, Dyn. Syst., 21:3 (2006), 379–384 | DOI | MR | Zbl

[5] Buescu J., Stewart I., “Liapunov stability and adding machines”, Ergodic Theory Dyn. Syst., 15:2 (1995), 271–290 | DOI | MR | Zbl

[6] Bufetov A.I., “Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group”, Sb. Math., 205 (2014), 192–219 | DOI | DOI | MR | Zbl

[7] Epstein D.B.A., Cannon J.W., Holt D.F., Levy S.V.F., Paterson M.S., Thurston W.P., Word processing in groups, Jones and Bartlett Publ., Boston, MA, 1992 | MR | Zbl

[8] Farrell R.H., “Representation of invariant measures”, Ill. J. Math., 6 (1962), 447–467 | MR | Zbl

[9] Fine N.J., “Binomial coefficients modulo a prime”, Amer. Math. Mon., 54 (1947), 589–592 | DOI | MR | Zbl

[10] Fomin S.V., “On measures invariant under a group of transformations”, Am. Math. Soc. Transl. Ser. 2, 51 (1966), 317–332 | MR | Zbl | Zbl

[11] Gawron P.W., Nekrashevych V.V., Sushchansky V.I., “Conjugation in tree automorphism groups”, Int. J. Algebra Comput., 11:5 (2001), 529–547 | DOI | MR | Zbl

[12] Grigorchuk R.I., “Burnside's problem on periodic groups”, Funct. Anal. Appl., 14 (1980), 41–43 | DOI | MR | Zbl

[13] Grigorchuk R.I., “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR, Izv., 25:2 (1985), 259–300 | DOI | MR | MR | Zbl

[14] Grigorchuk R.I., “Just infinite branch groups”, New horizons in pro-$p$ groups, Prog. Math., 184, Birkhäuser, Boston, MA, 2000, 121–179 | MR | Zbl

[15] Grigorchuk R., “Solved and unsolved problems around one group”, Infinite groups: Geometric, combinatorial and dynamical aspects, Progr. Math., 284, Birkhäuser, Basel, 2005, 117–218 | DOI | MR

[16] Grigorchuk R.I., “Some topics in the dynamics of group actions on rooted trees”, Proc. Steklov Inst. Math., 273 (2011), 64–175 | DOI | MR | Zbl

[17] Grigorchuk R., de la Harpe P., Amenability and ergodic properties of topological groups: From Bogolyubov onwards, E-print, 2014, arXiv: 1404.7030 [math.GR] | MR

[18] Grigorchuk R.I., Nekrashevich V.V., Sushchanskii V.I., “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231 (2000), 128–203 | MR | Zbl

[19] Grigorchuk R., Šunić Z., “Schreier spectrum of the Hanoi Towers group on three pegs”, Analysis on graphs and its applications, Proc. Symp. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 183–198 | DOI | MR | Zbl

[20] Grigorchuk R.I., Żuk A., “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. dedicata, 87:1–3 (2001), 209–244 | DOI | MR | Zbl

[21] Grigorchuk R.I., Żuk A., “On a torsion-free weakly branch group defined by a three state automaton”, Int. J. Algebra Comput., 12:1–2 (2002), 223–246 | DOI | MR | Zbl

[22] Kaloujnine L., “La structure des $p$-groupes de Sylow des groupes symétriques finis”, Ann. Sci. Éc. Norm. Super. Sér. 3, 65 (1948), 239–276 | MR | Zbl

[23] Kechris A.S., Miller B.D., Topics in orbit equivalence, Lect. Notes Math., 1852, Springer, Berlin, 2004 | DOI | MR | Zbl

[24] Klimann I., “The finiteness of a group generated by a 2-letter invertible–reversible Mealy automaton is decidable”, Proc. 30th Int. Symp. on Theoretical Aspects of Computer Science (STACS 2013), Leibniz Int. Proc. Inform., 20, Ed. by N. Portier, T. Wilke, Schloss Dagstuhl–Leibniz-Zent. Inform., Wadern, 2013, 502–513 | MR

[25] Klimann I., Picantin M., Savchuk D., A connected 3-state reversible Mealy automaton cannot generate an infinite Burnside group, E-print, 2014, arXiv: 1409.6142 [cs.FL] | MR

[26] Klimann I., Picantin M., Savchuk D., Orbit automata as a new tool to attack the order problem in automaton groups, E-print, 2014, arXiv: 1411.0158 [math.GR] | MR

[27] Kolmogoroff A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1973 | MR | Zbl

[28] Mackey G.W., “Ergodic transformation groups with a pure point spectrum”, Ill. J. Math., 8 (1964), 593–600 | MR | Zbl

[29] Nekrashevych V., Self-similar groups, Math. Surv. Monogr., 117, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[30] Parthasarathy K.R., Probability measures on metric spaces, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl

[31] Rokhlin V.A., “Selected topics from the metric theory of dynamical systems”, Am. Math. Soc. Transl. Ser. 2, 49 (1966), 171–240 | MR | Zbl | Zbl

[32] Savchuk D.M., Sidki S.N., “Affine automorphisms of rooted trees”, Geom. dedicata (to appear) , arXiv: 1510.08434 [math.GR]

[33] Suščanskiĭ V.I., “Periodic $p$-groups of permutations and the unrestricted Burnside problem”, Sov. Math. Dokl., 20 (1979), 766–770 | MR

[34] Varadarajan V.S., “Groups of automorphisms of Borel spaces”, Trans. Amer. Math. Soc., 109 (1963), 191–220 | DOI | MR | Zbl