On the size of the genus of a division algebra
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 69-99

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a central division algebra of degree $n$ over a field $K$. One defines the genus $\mathbf {gen}(D)$ as the set of classes $[D']\in \mathrm {Br}(K)$ in the Brauer group of $K$ represented by central division algebras $D'$ of degree $n$ over $K$ having the same maximal subfields as $D$. We prove that if the field $K$ is finitely generated and $n$ is prime to its characteristic, then $\mathbf {gen}(D)$ is finite, and give explicit estimations of its size in certain situations.
@article{TRSPY_2016_292_a4,
     author = {Vladimir I. Chernousov and Andrei S. Rapinchuk and Igor A. Rapinchuk},
     title = {On the size of the genus of a division algebra},
     journal = {Informatics and Automation},
     pages = {69--99},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/}
}
TY  - JOUR
AU  - Vladimir I. Chernousov
AU  - Andrei S. Rapinchuk
AU  - Igor A. Rapinchuk
TI  - On the size of the genus of a division algebra
JO  - Informatics and Automation
PY  - 2016
SP  - 69
EP  - 99
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/
LA  - en
ID  - TRSPY_2016_292_a4
ER  - 
%0 Journal Article
%A Vladimir I. Chernousov
%A Andrei S. Rapinchuk
%A Igor A. Rapinchuk
%T On the size of the genus of a division algebra
%J Informatics and Automation
%D 2016
%P 69-99
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/
%G en
%F TRSPY_2016_292_a4
Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk. On the size of the genus of a division algebra. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 69-99. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/