Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2016_292_a4, author = {Vladimir I. Chernousov and Andrei S. Rapinchuk and Igor A. Rapinchuk}, title = {On the size of the genus of a division algebra}, journal = {Informatics and Automation}, pages = {69--99}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/} }
TY - JOUR AU - Vladimir I. Chernousov AU - Andrei S. Rapinchuk AU - Igor A. Rapinchuk TI - On the size of the genus of a division algebra JO - Informatics and Automation PY - 2016 SP - 69 EP - 99 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/ LA - en ID - TRSPY_2016_292_a4 ER -
Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk. On the size of the genus of a division algebra. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 69-99. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/
[1] Algebraic number theory, Proc. Instr. Conf., Univ. Sussex, Brighton (UK), 1965, 2nd ed., Ed. by J.W.S. Cassels, A. Fröhlich, London Math. Soc., London, 2010 | MR
[2] Bandini A., Paladino L., “Number fields generated by the 3-torsion points of an elliptic curve”, Monatsh. Math., 168:2 (2012), 157–181 | DOI | MR | Zbl
[3] Bosch S., Lütkebohmert W., Raynaud M., Néron models, Springer, Berlin, 2010 | MR
[4] Bourbaki N., Commutative algebra. Chapters 1–7, Elements of Mathematics, Springer, Berlin, 1989 | MR | Zbl
[5] Chernousov V., Guletskiĭ V., “2-torsion of the Brauer group of an elliptic curve: Generators and relations”, Doc. math., 2001, Extra vol., 85–120 | MR | Zbl
[6] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “On the genus of a division algebra”, C. r. Math. Acad. sci. Paris, 350:17–18 (2012), 807–812 | DOI | MR | Zbl
[7] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “The genus of a division algebra and the unramified Brauer group”, Bull. Math. Sci., 3:2 (2013), 211–240 | DOI | MR | Zbl
[8] Chernousov V.I., Rapinchuk A.S., Rapinchuk I.A., “Division algebras with the same maximal subfields”, Russ. Math. Surv., 70 (2015), 83–112 | DOI | DOI | MR | Zbl
[9] Ciperiani M., Krashen D., “Relative Brauer groups of genus 1 curves”, Isr. J. Math., 192 (2012), 921–949 | DOI | MR | Zbl
[10] Colliot-Thélène J.-L., “Birational invariants, purity and the Gersten conjecture”, $K$-theory and algebraic geometry: Connections with quadratic forms and division algebras, Summer Res. Inst., Unif. Calif., 1992, Proc. Symp. Pure Math., 58, Part 1, Amer. Math. Soc., Providence, RI, 1995, 1–64 | DOI | MR | Zbl
[11] Colliot-Thélène J.-L., “Groupe de Chow des zéro-cycles sur les variétés $p$-adiques (d'après S. Saito, K. Sato et al.)”, Séminaire Bourbaki 2009/2010, Exp. 1012, Astérisque, 339, Soc. math. France, Paris, 2011, 1–30 | MR
[12] Colliot-Thélène J.-L., Saito S., “Zéro-cycles sur les variétés $p$-adiques et groupe de Brauer”, Int. Math. Res. Not., 1996:4 (1996), 151–160 | DOI | MR | Zbl
[13] Deligne P., Cohomologie étale: Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$, Lect. Notes Math., 569, Springer, Berlin, 1977 | DOI | MR
[14] Fujiwara K., “A proof of the absolute purity conjecture (after Gabber)”, Algebraic geometry 2000, Azumino: Proc. Symp. Nagano, 2000, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002, 153–183 | MR | Zbl
[15] Garibaldi S., Merkurjev A., Serre J.-P., Cohomological invariants in Galois cohomology, Univ. Lect. Ser., 28, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[16] van der Geer G., Moonen B., Abelian varieties http://www.math.ru.nl/~bmoonen/research.html#bookabvar
[17] Gille P., Szamuely T., Central simple algebras and Galois cohomology, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[18] Hindry M., Silverman J.H., Diophantine geometry: An introduction, Grad. Texts Math., 201, Springer, New York, 2000 | DOI | MR | Zbl
[19] Janusz G.J., Algebraic number fields, Grad. Stud. Math., 7, 2nd ed., Amer. Math. Soc., Providence, RI, 1996 | MR
[20] Kahn B., “Sur le groupe des classes d'un schéma arithmétique”, Bull. Soc. math. France, 134:3 (2006), 395–415 | MR | Zbl
[21] Lang S., Algebra, Grad. Texts Math., 211, 3rd rev. ed., Springer, New York, 2002 | DOI | MR | Zbl
[22] Lang S., Fundamentals of Diophantine geometry, Springer, New York, 1983 | MR | Zbl
[23] Lenstra H.L., Galois theory for schemes, Preprint, Univ. Leiden, 2008 http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf | MR
[24] Lichtenbaum S., “Duality theorems for curves over $p$-adic fields”, Invent. math., 7 (1969), 120–136 | DOI | MR | Zbl
[25] Liu Q., Algebraic geometry and arithmetic curves, Oxford Grad. Texts Math., 6, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[26] Meyer J.S., “Division algebras with infinite genus”, Bull. London Math. Soc., 46:3 (2014), 463–468 | DOI | MR | Zbl
[27] Milne J.S., Étale cohomology, Princeton Univ. Press, Princeton, NJ, 1980 | MR
[28] Milne J.S., “Jacobian varieties”, Arithmetic geometry, Proc. Conf., Univ. Connecticut, Storrs, Aug. 1984, Ch. VII, Springer, New York, 1986, 167–212 | DOI | MR
[29] Milne J.S., Arithmetic duality theorems, 2nd ed., BookSurge, LLC, Charleston, SC, 2006 | MR | Zbl
[30] Neukirch J., Schmidt A., Wingberg K., Cohomology of number fields, Grundl. Math. Wiss., 323, Springer, Berlin, 2000 | MR | Zbl
[31] Paladino L., “Elliptic curves with $\mathbb Q (\mathcal E[3]) = \mathbb Q(\zeta _3)$ and counterexamples to local-global divisibility by 9”, J. Théor. Nombres Bord., 22:1 (2010), 139–160 | DOI | MR | Zbl
[32] Pierce R.S., Associative algebras, Grad. Texts Math., 88, Springer, New York, 1982 | DOI | MR | Zbl
[33] Platonov V.P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in the Jacobians of the hyperelliptic curves over the rational number field”, Russ. Math. Surv., 69 (2014), 1–34 | DOI | DOI | MR | Zbl
[34] Poonen B., Rational points on varieties, Preprint, Mass. Inst. Technol, Cambridge, MA http://www-math.mit.edu/~poonen/papers/Qpoints.pdf
[35] Ramakrishnan D., Valenza R.J., Fourier analysis on number fields, Grad. Texts Math., 186, Springer, New York, 1999 | DOI | MR | Zbl
[36] Rapinchuk A.S., Rapinchuk I.A., “On division algebras having the same maximal subfields”, Manuscr. math., 132 (2010), 273–293 | DOI | MR | Zbl
[37] Riou J., Pureté (d'après Gabber), Preprint, Univ. Paris-Sud, Orsay, 2007 http://www.math.u-psud.fr/~riou/doc/gysin.pdf | MR
[38] Saltman D.J., Lectures on division algebras, Reg. Conf. Ser. Math., 94, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[39] Samuel P., “A propos du théorème des unités”, Bull. sci. math. Sér. 2, 90 (1966), 89–96 | MR | Zbl
[40] Serre J.-P., Local fields, Grad. Texts Math., 67, Springer, New York, 1979 | DOI | MR | Zbl
[41] Serre J.-P., Galois cohomology, Springer Monogr. Math., Springer, Berlin, 1997 | DOI | MR | Zbl
[42] Silverman J.H., The arithmetic of elliptic curves, Grad. Texts Math., 106, 2nd ed., Springer, New York, 2009 | DOI | MR | Zbl
[43] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl
[44] Tikhonov S.V., “Division algebras of prime degree with infinite genus”, Proc. Steklov Inst. Math., 292 (2016), 256–259
[45] Yanchevskii V.I., Margolin G.L., “The Brauer groups of local hyperelliptic curves with good reduction”, St. Petersburg Math. J., 7 (1996), 1033–1048 | MR