On the size of the genus of a division algebra
Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 69-99
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a central division algebra of degree $n$ over a field $K$. One defines the genus $\mathbf {gen}(D)$ as the set of classes $[D']\in \mathrm {Br}(K)$ in the Brauer group of $K$ represented by central division algebras $D'$ of degree $n$ over $K$ having the same maximal subfields as $D$. We prove that if the field $K$ is finitely generated and $n$ is prime to its characteristic, then $\mathbf {gen}(D)$ is finite, and give explicit estimations of its size in certain situations.
@article{TRSPY_2016_292_a4,
author = {Vladimir I. Chernousov and Andrei S. Rapinchuk and Igor A. Rapinchuk},
title = {On the size of the genus of a division algebra},
journal = {Informatics and Automation},
pages = {69--99},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/}
}
TY - JOUR AU - Vladimir I. Chernousov AU - Andrei S. Rapinchuk AU - Igor A. Rapinchuk TI - On the size of the genus of a division algebra JO - Informatics and Automation PY - 2016 SP - 69 EP - 99 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/ LA - en ID - TRSPY_2016_292_a4 ER -
Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk. On the size of the genus of a division algebra. Informatics and Automation, Algebra, geometry, and number theory, Tome 292 (2016), pp. 69-99. http://geodesic.mathdoc.fr/item/TRSPY_2016_292_a4/